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Let us help one another to see things better.— CLAUDE MONET

Introduction

Mathematicians have always used their “mind’s
eye” to visualize the abstract objects and processes
that arise in all branches of mathematical research.
But it is only in recent years that remarkable im-
provements in computer technology have made it
easy to externalize these vague and subjective pic-
tures that we “see” in our heads, replacing them
with precise and objective visualizations that can
be shared with others. This marriage of mathe-
matics and computer science will be my topic in
what follows, and I will refer to it as mathemati-
cal visualization.

The subject is of such recent vintage and in
such a state of flux that it would be difficult to write
a detailed account of its development or of the cur-
rent state of the art. But there are two important
threads of research that established the reputation
of computer-generated visualizations as a serious
tool in mathematical research. These are the ex-
plicit constructions of eversions of the sphere and
of embedded, complete minimal surfaces of higher
genus. The history of both of these is well docu-
mented, and I will retell some of it later in this
article.
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However, my main reason for writing this arti-
cle is not to dwell on past successes of mathe-
matical visualization; rather, it is to consider the
question, Where do we go from here? I have been
working on a mathematical visualization program!
for more than five years now. In the course of de-
veloping that program I have had some insights and
made some observations that I believe may be of
interest to a general audience, and I will try to ex-
plain some of them in this article. In particular,
working on my program has forced me to think se-
riously about possibilities for interesting new ap-
plications of mathematical visualization, and I
would like to mention one in particular that I hope
others will find as exciting a prospect as I do: the
creation of an online, interactive gallery of math-
ematical visualization and art that I call the “Math-
ematical Exploratorium”.

Let me begin by reviewing some of the familiar
applications of mathematical visualization tech-
niques. One obvious use is as an educational tool
to augment those carefully crafted plaster models
of mathematical surfaces that inhabit display cases
in many mathematics centers [Fi] and the line
drawings of textbooks and in such wonderful clas-
sics as Geometry and the Imagination [HC]. The ad-
vantage of supplementing these and other such
classic representations of mathematical objects
by computer-generated images is not only that a
computer allows one to produce such static dis-
plays quickly and easily, but in addition it then be-
comes straightforward to create rotation and mor-

LThe program is called 3D-Filmstrip, but I will refer to it
simply as “my program” in this article. Later in the arti-
cle I will explain how to obtain a copy for personal use.
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of only a few seconds can generate
trillions of floating point numbers.
While there are statistical techniques
for making sense of such huge data
sets, displaying the velocity field vi-
sually is essential to get an insight
into what is going on.

Also, scientists who need and use
mathematics but are not completely
at ease with abstract mathematical
notations and formulas can often
better understand the mathemati-
cal concepts they have to deal with
if these concepts can be given a vi-
sual embodiment. Finally, there is
no denying that mathematical visu-
alization has a strong aesthetic ap-
peal, even to the lay public—witness
the remarkable success of coffee

Figure 1. Symmetries of the Costa surface. The Costa surface (left) is cut by the table picture books of fractal im-

three coordinate planes into eight congruent tiles, fundamental domains for ages!
the symmetry group. The horizontal plane cuts the Costa surface along two
straight lines; the upper and the lower half are moved apart so that they do not
overlap. The vertical planes are planes of reflectional symmetry and the
symmetry lines are emphasized as gaps in the top and bottom part. The eight
fundamental domains, one per octant, can each be represented as a graph, and
Hoffman-Meek’s theorem that the Costa surface is embedded follows easily
from this fact.

Mathematical Visualization ¢
Computer Graphics

One important lesson I have learned
from my own experience is that
mathematical visualization pro-

phing animations that can bring the known math-
ematical landscape to life in unprecedented ways.

Even more exciting for the research mathe-
matician are the possibilities that now exist to use
mathematical visualization software to obtain fresh
insights concerning complex and poorly under-
stood mathematical objects. For example, giving
an abstract mathematical object a geometric rep-
resentation and then displaying it visually can
sometimes reveal a new symmetry that was not ap-
parent from the theoretical description. Just such
a hidden symmetry, disclosed by visualization,
played a key role in the Hoffman-Meeks proof of
the embeddedness of the Costa minimal surface
[H]. (See Figure 1.) Similarly, a morphing animation
in which a particular visual feature of a family of
objects remains fixed when certain parameters
are changed can suggest the existence of a nonob-
vious invariant. The helicoid-catenoid morph that
we discuss later is an example of this kind. (See Fig-
ure 2.)

Applied mathematicians find that the highly
interactive nature of the images produced by re-
cent mathematical visualization software allows
them to do mathematical experiments with an
ease never before possible. Since very few of the
systems they deal with admit explicit, closed form
solutions, this ability to investigate solutions vi-
sually has become an essential tool in many fields.
For example, in studying fluid flow close to the
onset of turbulence, the description of a velocity
field in a small 3-dimensional region over a period
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gramming should not be approached
as just a special case of 3-dimensional (3D) graph-
ics programming. While the two share concepts and
algorithmes, their goals and methods are quite dis-
tinct. Indeed, there are peculiarities inherent in dis-
playing mathematical objects and processes that
if properly taken into account can greatly simplify
programming tasks and lead to algorithms more
efficient than the standard techniques of 3D graph-
ics programming. Conversely, if one ignores these
special features and, for example, displays a math-
ematical surface with software techniques de-
signed for showing the boundary of a real-world
solid object, many essential features of the surface
that a mathematician is interested in observing will
end up hidden. The mathematician’s fine catego-
rization of surfaces into parametric, implicit, al-
gebraic, pseudo-spherical, minimal, constant mean
curvature, Riemann surfaces, etc., becomes blurred
by the computer graphics notion of surface, and
one quickly learns that not only are off-the-shelf
computer graphics methods inadequate for cre-
ating and displaying all of these various types of
surfaces but also that a special method designed
to optimize the display of one type of mathemat-
ical surface may not be appropriate for others.
One corollary of this is that it is not a good strat-
egy to base mathematical visualization on some
small fixed number of predefined, high-level graph-
ics routines and expect that one will be able to shoe-
horn in all varieties of mathematical objects. Of
course, one needs a number of low-level graphics
primitives to get going, but instead of the Pro-
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Figure 2. Helicoid-Catenoid Morph. Shown here (using three rendering methods) are six frames of the associate
family morph joining the helicoid and catenoid minimal surfaces. Patch rendering (top) and wireframe rendering
(middle) expose the isometric quality of the deformation, while ceramic rendering conceals it. Note how the
automatic hidden lines feature of the painter’s algorithm makes the patch version visually superior to the

wireframe one.

crustean approach, attempting to fit each mathe-
matical object to one of a few high-level display
methods, it is better to use the low-level routines
to design optimal display algorithms for each spe-
cial kind of mathematical situation. This entails
more effort for the programmer, but the superior
results warrant the extra effort. A second corollary
is that one or more mathematicians must play a
central and ongoing role in the planning and de-
velopment of any serious mathematical visualiza-
tion software project. I consider myself fairly
knowledgeable in differential geometry, and for
much of the basic programming of the curves and
surfaces parts of my program I played both the role
of programmer and of mathematical consultant.
But I found that it was absolutely essential for me
to work closely with experts (Hermann Karcher
and Chuu-Lian Terng respectively) to do a profes-
sional job in programming the creation and display
of minimal surfaces and pseudospherical surfaces.

In what follows I will, as above, often illustrate
some point by referring to the visualization of
geometric objects like curves, surfaces, and poly-
hedra. I choose such examples mainly because

JUNE/JuLy 1999

they are highly intuitive and so require less ex-
planation. But it is important to realize that almost
all of the same points could be made in relation
to the display of conformal mappings, solutions
of ordinary and partial differential equations, or
visualizations associated to almost any other cat-
egory of mathematical object.

Multiobject vs. Single-Object Graphics Worlds
I claimed above that mathematical visualization has
features that set it apart from general computer
graphics and that requires some special techniques
and algorithmes. In this and the next section I will
give two simple examples that illustrate this point.
If one examines a typical visual created by a 3D
graphics program, say the lead-in to a nightly TV
news program, one sees many different objects
moving in disparate ways. A globe representing the
earth spins around a vertical axis, while a logo
zooms in as it simultaneously rotates about a hor-
izontal axis, etc. This is an example of what I will
refer to as a multiobject graphics world. The nor-
mal method for animating such a world is to cre-
ate each 3D object in a “fiducial” location and ori-
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entation and then associate to the object a 4 x 4
“update matrix” that, for each frame of the ani-
mation, will have the values needed to translate and
rotate the object from its original position to the
position appropriate for that frame. To create one
frame of such an animation requires that each
point of each object in this multiobject world be
transformed by the matrix appropriate to its ob-
ject. To create a real-time animation for a scene of
any complexity using this method, one needs a very
powerful computer—usually one with specialized
graphics hardware.

On the other hand, if one examines a typical
mathematical visualization, one sees that it con-
sists of a single object (curve, surface, polyhedron,
etc.) that is usually centered on the screen, and a
rotation animation is almost always about the
screen center. Let me refer to such a graphics
setup as a single-object graphics world. Now, of
course, one could treat such a setup as just a spe-
cial case of an n object world, ignoring the fact that
n = 1. But 1 is a rather special integer, and in fact
there is a more efficient way to rotate a single-ob-
ject world about an axis than applying the associ-
ated rotation matrix M to each of the points defin-
ing the object—namely, apply the matrix inverse
of M to the viewing camera location and the three
vectors defining its orientation. Visually this will
have the same effect, but in general it will be con-
siderably more efficient, and it can make it possi-
ble to do real-time rotation on simple desktop
computers without special graphics hardware.

Offscreen vs. Onscreen Drawing

A standard rendering technique for displaying a
surface on a computer monitor is the “painter’s al-
gorithm”. The surface is represented as the union
of “facets” (colored polygons, often triangles or rec-
tangles). These facets are sorted by their distance
from the viewing camera; then they are “painted”
on the screen from back to front. This has the ob-
vious advantage of automatically hiding those
facets that are behind other facets.

Computer graphics experts nearly always cou-
ple the painter’s algorithm with a second tech-
nique called “double-buffering” or “offscreen draw-
ing”. That is, they first draw the entire surface in
a so-called “offscreen buffer”, a block of computer
memory that duplicates the video display memory.
Only when the surface is complete is this buffer
copied back to the video display. The result is that
the completed surface suddenly appears on the
monitor. The reason for double-buffering is that,
in most situations, the user is not supposed to see
the ugly sight of a partially painted surface.

But in certain situations, using offscreen draw-
ing to display a mathematical surface is a pro-
gramming offense that approaches a felony! Most
interesting surfaces are highly complex and often
immersed rather than imbedded. Viewed from any
location, there will be several “sheets”, and im-
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portant details on far sheets will be obscured by
the nearer sheets. Watching such a surface grad-
ually being built up by the painter’s algorithm can
be a remarkably revealing experience, playing the
role for a geometer akin to dissection for an
anatomist.

Nevertheless, I receive occasional well-meaning
e-mail messages from nonmathematicians with a
knowledge of 3D computer graphics who have
somehow come across my program. The message
is always the same: my program is very nice, but
I should really get hold of an elementary text on
computer graphics and learn about double-buffer-
ing so that I can get rid of those silly partially
drawn surfaces! (I usually respond that I do use
double-buffering: after the surface is completely
drawn on-screen, I copy the video RAM to an off-
screen buffer that I use for screen updating. I sus-
pect this completely backwards way of doing things
convinces them I am hopeless, since the exchange
usually ends there.)

Processes

ItIs Important to Visualize Processes As Well As
Objects

When I started developing my program, I felt that
the main task of a mathematical visualization pro-
gram was to display various mathematical objects.
But as time has passed I have come to realize that
this is only part of the story and perhaps much
more important is the display of mathematical
processes. I would be hard put to give a precise
mathematical definition of what I mean here by
“process”—one that would cover all the impor-
tant cases that might arise—but, roughly speaking,
I mean an animation that shows a related family
of mathematical objects or else an object that
arises by some procedure naturally associated to
another object. Perhaps it is best to explain with
a few examples.

Morphing

Morphing is one of the most important processes,
so let me explain it first. Most mathematical ob-
jects occur in natural families that are described
by certain parameters—also called moduli if we
first divide out an appropriate group of automor-
phisms. For example, an ellipse can be described
by five parameters, the coefficients of its implicit
equation, and, if we divide out by the rigid motions
of the plane, by two moduli, namely, the lengths
of the two semi-axes. One initial goal for a math-
ematical theory of some new kind of object is usu-
ally a “classification theorem”—roughly speaking,
discovering the space of moduli. The next step is
a detailed investigation of the moduli space to see
how various properties of the object depend on the
moduli and to see what values of the moduli give
rise to objects with special, interesting properties.
For example, when its two semi-axes are equal, an
ellipse is a circle and has a continuous group of
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symmetries, while the generic ellipse has only a fi-
nite symmetry group.

If we can devise a good way of displaying an ob-
ject graphically, including its dependence on mod-
uli, then we can move along a curve in the moduli
space and draw frames consisting of the graphi-
cal representation of the object at various points
along the curve. If we then play these frames back
in rapid succession, we get a movie of how the ob-
ject changes as we change the moduli along the
curve, and this is what I call a morph. Clearly this
can be a powerful tool in investigating the moduli
space. Often, even when the moduli space is infi-
nite dimensional, it will contain special curves that
provide interesting morphs.

For example, minimal surfaces come in one-pa-
rameter families (so-called associate families), all
of whose members are isometric, though usually
not congruent. Using the associated family para-
meter as a morphing parameter provides a par-
ticularly beautiful animation, one that in principle
can be modeled in sheet metal. The helicoid and
the catenoid belong to an associate family, and dif-
ferential geometry books often show several frames
of a morph between them. (See Figure 2.)

Similarly, the space of moduli for pseudospher-
ical surfaces can be identified with the space of so-
lutions of the Sine-Gordon partial differential equa-
tion. The latter contains certain n-parameter families
(the pure n-soliton solutions) that correspond to
particularly interesting surfaces. The 1-solitons cor-
respond to the well-known Dini family, which con-
tains the pseudosphere, and it was Chuu-Lian Terng’s
desire to see how properties of the corresponding
surfaces changed as one morphed within the 2-
soliton family that provided the original motivation
for starting work on my program. (See Figure 3.)

The morphing process is such a powerful and
revealing tool that whenever I add a new category
of mathematical objects to the repertory of my pro-
gram, I spend a lot of time thinking about and ex-
perimenting with creative ways to use morphs that
are particularly adapted to that category. For ex-
ample, I found that in displaying conformal maps,
morphing along a carefully chosen path between
a given map and the identity map is a particularly
good way to reveal the structure of the map. And
morphing is the obvious method for displaying the
bifurcations of solutions of ordinary differential
equations or for watching the onset of chaos as
some key parameter is varied. A typical case of the
latter is the well-known Lorenz equation that pro-
vided one of the motivations for early work on
chaos. In fact, Lorenz used the primitive computer
techniques available to him at that time to vary the
Reynolds number and watch as an attracting fixed
point turned into the “Lorenz Attractor”.

More Processes
Let me quickly mention just a few other “processes”
to illustrate further the scope of that term.
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Figure 3. Pseudospherical Surfaces. Solutions of
the Sine-Gordon Equation (SGE), u;; — uyxy = sin(u),
correspond one-to-one with surfaces in R3 that
model Lobachevsky’s hyperbolic geometry. SGE is
a soliton equation, and at top we see the surface
corresponding to a time-periodic solution with
soliton number 2 called The Breather. Below that is
a six frame morph through the Dini family of
surfaces, corresponding to the 1-parameter family
of SGE 1-solitons.

If a plane curve is given, it is revealing to show
an animation in which the “osculating circles” are
drawn at a point that moves along the curve, the
centers of curvature tracing out the evolute of the
curve as the animation proceeds. In fact, there are
many such classical processes that associate other
curves with a given curve (pedals, strophoids,
epicycloids, parallel curves, etc.), most of which be-
come much easier to understand and illustrate
with a computer.

For a space curve, an interesting process is the
construction of a “tube” about the curve. This con-
struction involves choosing a framing for the nor-
mal bundle to the curve, usually the “Frenet frame”,
and the tube serves to reveal the important (but
usually invisible) framing. One’s first impulse is to
choose a tube with a round cross-section on aes-
thetic grounds, but to see the framing clearly, one
should use a tube with a square cross-section.
Once they see the point, mathematicians will almost
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Figure 4. Tubes about a Torus Knot. A
projection of the 2, 5-torus knot, and of two
tubes about it with square cross-section. The
upper tube uses the Frenet framing of the
normal bundle; the other uses parallel framing.
Notice how the tubes expose the 3-dimensional
nature of the knot. One can see the Frenet
frame twist more rapidly in the inside of the
torus, and the eye also detects the nontrivial
holonomy of the parallel framing, shown by the
tube not matching up in the lower right.
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always prefer the latter. Most people are usually
very surprised to see how fast the Frenet frame may
twist where the curvature is small. It is also inter-
esting to switch from the Frenet frame to a paral-
lel framing of the normal bundle. In this case there
is no twisting, and the framing indeed looks par-
allel. But now the holonomy becomes strikingly vis-
ible: in going around a closed curve, the frame
does not usually return to its starting value. (See
Figure 4.)

For a surface, important processes are the con-
struction of its focal sets and parallel surfaces.

For a polyhedron, two interesting processes are
the constructions of its stellation and its trunca-
tion (the latter is what converts a regular icosahe-
dron into a buckyball), and I find it instructive to
morph between the untruncated and truncated
forms.

Mathematics vs. Art

One should not confuse mathematical visual-
ization with mathematical art. By the latter I am
referring to the work of talented graphic artists and
sculptors whose principal subject matter origi-
nates in the world of mathematics. Everyone has
seen the fascinating and beautiful mathematical
drawings of M. C. Escher [Sc], the famous Dutch
graphic artist of the first half of this century. More
recently, the Russian mathematician and artist
Anatolil Fomenko has enriched our mathematical
heritage with spectacular images of surreal vistas,
drawn from the depths of his own inspired imag-
ination, that illustrate and illuminate complex
mathematical concepts [Fo]. Currently a new gen-
eration of artists is finding inspiration from the pla-
tonic world of mathematics. Prominent among
these are the sculptors Helaman Ferguson, Charles
Perry, and Brent Collins. All of them use mathe-
matical visualization software to create the ob-
jects that underlie their sculpture, but like Escher
before them, they then impress their own artistic
vision on the mathematical raw material from
which they start.

One seeming distinction between a mathemat-
ical visualization graphic and a piece of mathe-
matical art is the apparent difference in time and
difficulty it takes to produce them. The former is
usually generated completely automatically, often
in only a few moments of computer time, while the
latter often takes days or even weeks of skilled
handwork by the artist, perhaps preceded by an
even longer period of thoughtful planning. But
this way of seeing things distorts a deeper reality.
The serious work of planning and creating a math-
ematical visualization graphic really takes place
when the algorithms are developed and coded,
and for complicated objects this can be a long and
arduous piece of research. It is the programmer,
not the computer, that creates a mathematical vi-
sualization.
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The real difference between the two lies in their
ultimate goals. In the creation of mathematical
art, mathematics is a starting point, but art con-
trols—“artistic license” is granted the artist to de-
viate from perfect fidelity to the mathematics and
to use other aesthetic principles to emphasize as-
pects of reality that the artist is trying to show us.

But in the creation of a mathematical visual-
ization, the controlling principle should always be
to show as clearly as possible the underlying math-
ematical qualities and properties of the objects
being visualized. The temptation to “pretty up” a
visualization should be resisted, particularly if
mathematical information gets lost in the process.
One example of this principle was mentioned
above, namely, using square rather than circular
cross-sections for tubes around space-curves in
order to make visible the framing of the normal
bundle.

Here is another example, this time from surface
theory. Examination of a great many computer-gen-
erated surface visualizations will show that they
almost all fall into one of three main types that I
will refer to as wire-frame, patch, and ceramic.
The term “wire-frame surface” is self-explanatory.
In a patch rendering, one still displays the wire-
frame skeleton but in addition fills in each of the
rectangular patches with a color that mimics the
way white paint on the surface would reflect light
from several light sources with different positions
and colors. If these positions and colors are cho-
sen with care, a patch mode rendering will give a
realistic 3-dimensional appearance to the surface.
In a ceramic rendering of a surface, the wire-frame
is removed and only the colored patches are dis-
played. If the patches are small enough, the color
of the surface will appear to vary smoothly, and
the resulting rendering is again realistic.

Now, a nonmathematician may feel that the
wire-frame skeleton is extraneous and that the ce-
ramic version looks more beautiful. But beauty, it
is said, is in the eye of the beholder, and to the eye
of a geometer it is the wire-frame? or patch ver-
sion that frequently looks more beautiful, since it
conveys extra mathematical information that is
discarded along with the wire-frame mesh. In fact,
if chosen with care, the mesh will be an orthogo-
nal net that displays the conformal structure or
even the Riemannian metric induced from the im-
mersion of the surface into R3. A dramatic way to
illustrate this is to watch in succession three ver-
sions of the helicoid-catenoid morph, using first
wire-frame, then patch, then ceramic rendering. The
crucial fact that one wants to illustrate, namely, that

2To be sure, wire-frame rendering lacks 3-dimensional-
ity, but that defect can be easily overcome by using var-
ious stereo vision techniques. The name of my program,
3D-Filmstrip, was chosen because it emphasizes stereo ren-
dering of 3D objects using the anaglyph method (i.e.,
using red/green glasses).
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an associate family deformation is isometric, fairly
jumps out of the screen in the first two versions
but is completely hidden with a ceramic rendering
(Figure 2). My point is not that a patch rendering
is necessarily always better than a ceramic one, but
rather that when using software to create a math-
ematical visualization, the ideal should be to care-
fully tailor all available options to display best the
mathematical features that need emphasizing in
a particular situation, and aesthetics should not be
permitted to override mathematical considera-
tions.

The Mathematical Exploratorium

It is no secret that the incredible quantity of in-
formation on the World Wide Web is as yet poorly
organized and is not easily classified as to relevance
and quality. Trying to separate nuggets of serious
value from all the dross can be a frustrating ex-
perience. Asking any of the
various Web search engines to
provide a list of Web sites that
contain references to almost
any imaginable topic will re-
sult in bushels of possibly rel-
evant Web addresses (i.e.,
URLSs), but sifting through
them to find the few that are
of serious interest is usually
an arduous and time-con-
suming task.

Over the past year I have

been diligently searching the but real
Internet for sources of math-

ematical visualizations,3 both WwWor Id

as preparation for writing this _ 21
article and for use in another AnatOI 11
project in which I am involved. FO men ko

It was a pleasant surprise to

see how many things one can

find already, and this corpus

is growing rapidly. Of course

it is not of uniform quality—some is amateurish
and slapdash—but there is also much of profes-
sional quality. As I gradually arranged this mate-
rial for my own immediate purposes, I began to re-
alize what a useful resource could be created by
carefully organizing all the best-quality visualiza-
tions and animations of mathematical objects and
processes, cataloging and documenting them to
form an online virtual museum of mathematics that
I refer to as The Mathematical Exploratorium. Let

3 have created a gallery of 3D-Filmstrip visualizations and
animations and placed it on the Web. The main catalog
is at the Web address|http://rsp.math.brandeis.|
ledu/3D-FilTmstrip_html/GalTleries/Catalogs/|
[MainCatalog.html} and that catalog also contains links
to many of the best examples of mathematical visualiza-
tion that I know of on the Web.
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I think of my
drawings as if
they were
photographs
of a strange
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me explain what I have in mind in a little more de-
tail.

The Mathematical Exploratorium would be di-
vided into “wings”. There would be a Surface Wing,
a Polyhedron Wing, a Fractal Wing, a Tiling Wing,
an Ordinary Differential Equation Wing, etc. There
would also be a wing devoted to a Museum School,
where there would be software packages for the
creation of visualizations as well as documentation
and tutorials explaining their use. Each wing would
be divided into galleries: for example, the Surface
Wing would have a Pseudospherical Surface Gallery,
a Minimal Surface Gallery, and so on, and some gal-
leries would be further divided into alcoves.

There would be a main catalog that would list
in an abbreviated format all the “holdings” of the
Exploratorium, and each wing and gallery would
have its own more detailed catalog, with thumb-
nail previews of all the objects it contains. Of
course, these catalogs would be written in html (the
“hypertext markup language”), and clicking on the
name of an object or an animation would bring it
up on the computer screen.

Each visualization would be accompanied by a
short label giving its identity, its creator, and other
items of a bibliographic nature. In addition, the
label would contain a link to detailed mathemati-
cal documentation of the object being visualized—
discoverer, special properties, mathematical the-
orems it illustrates, relations to other objects,
interesting ways to morph it, etc. Similarly, each
wing and gallery would have documentation that
gives a quick overview of the mathematical area it
covers and references to one or more monographs
that cover the subject in detail.

A Little History

Two problems in mathematics have helped push
the state of the art in mathematical visualization—
namely, the problems of everting the 2-sphere
and of constructing new, embedded, complete
minimal surfaces, especially higher-genus exam-
ples. In the case of eversion, the goal was to illu-
minate a process so complex that very few people,
even experts, could picture the full details mentally.
In the case of minimal surfaces, the visualizations
actually helped point the way to rigorous mathe-
matical proofs.

Everting the Sphere

Let f : S™ — R™1 be a smooth map of the n-sphere
into Euclidean space of dimension n + 1. We recall
that fis called an immersion if it is locally a non-
singular embedding or, equivalently (by the Implicit
Function Theorem), if at each point p of the sphere
the differential, Dfp, is injective. In this case, we
can associate to f a self-mapping Gy of S" (called
the Gauss map of f) as follows. The (oriented) tan-
gent space of S™ at p is mapped by Df, onto an
oriented n-dimensional subspace V of R"*1, and
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G¢(p) is that one of the two unit normals to V that
extends the orientation of V to the standard ori-
entation of R™*1. We call the degree of Grthe turn-
ing number of f.

A homotopy f; of f = fo is called a regular ho-
motopy if each stage is an immersion and if, in ad-
dition, f;(x) is jointly smooth in t and x. In that
case, Df; is a homotopy and is easily seen to in-
duce a homotopy Gy, of Gauss maps so that the
turning numbers of fo and f; will be equal. It is a
simple exercise to compute that the turning num-
ber of the identity map is 1 while that of the an-
tipodal map is (—1)™.

An eversion of the n-sphere is by definition a
regular homotopy between the identity map and
the antipodal map—in effect it turns the n-sphere
inside out without creasing it along the way. By
what we have just seen, there can be no eversion
of a circle (or any odd-dimensional sphere). But how
about the 2-sphere? The turning number is not an
obstruction, but can we really turn it inside out?
For most differential topologists in the mid-1950s
it seemed that the answer must be no, so there was
considerable surprise—and even some disbelief—
when Stephen Smale in his thesis [Sm] proved a
general result having as a corollary that any two
immersions of the 2-sphere in R3 were regularly
homotopic. Smale’s proof was in principle con-
structive, but it was so complicated that it did not
really provide an effective method for giving an ex-
plicit eversion. The first explicit eversion was ap-
parently discovered by Arnold Shapiro in 1961.
Shapiro never published it, but it was described
(with illustrations) by Anthony Phillips in a 1966
Scientific American article [Ph] that first brought
the sphere eversion problem to public attention.

All proposed explicit eversions have been so
complicated that most people are able to under-
stand how they work only by watching an ani-
mated visualization played many times over. The
first reasonably simple eversion was discovered by
Bernard Morin in 1967, and a number of stages of
Morin’s eversion were rendered into chicken-wire
models by Charles Pugh. Nelson Max [MC] digitized
the grid points of these models by making careful
hand measurements of their locations and then
using a computer to interpolate the resulting 3-
dimensional grids, creating in this way a morph-
ing animation in the form of a movie (Turning a
Sphere Inside Out) that provided the final “seeing
is believing” argument to convince any remaining
doubters that the 2-sphere could indeed be everted.
In two further films (Regular Homotopies in the
Plane, Parts I and II) Max used visualization tech-
niques to explain the statement and proof of the
so-called Whitney-Graustein Theorem—the fact
that equality of turning numbers is not only nec-
essary but also sufficient for two smooth immer-
sions of the circle in the plane to be regularly ho-
motopic.
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Many more computer-generated visualizations
of eversions have been proposed since that first
one. One, suggested by William Thurston, has been
made into a beautiful video called Outside In [L].
It is available, accompanied by a highly readable
brochure called Making Waves, written by Silvio
Levy. The latter documents the making of the video
and the mathematics behind it and also gives fur-
ther details concerning the history of sphere ever-
sions through 1995. A recent and very interesting
sphere eversion that uses Brakke’s Surface Evolver
software is described in [Sc] and [FSKB].

Constructing Embedded Minimal Surfaces
The theory of minimal surfaces is a fascinating mix-
ture of complex function theory, partial differen-
tial equations, and differential geometry, and for
well over a century it has attracted the creative en-
ergies of successive generations of mathemati-
cians. Recent activity has centered on the study of
embedded, complete minimal surfaces of “finite
topology” (i.e., conformal to a compact Riemann
surface with a finite number of points removed).
Two decades ago the only known examples of such
minimal surfaces were the plane, the catenoid,
and the helicoid, all of which were already known
to the geometer J. Meusnier at the time of the
American Revolution. The fact that no more had
been discovered over such a long period led to the
obvious conjecture that there were in fact no oth-
ers. About thirty years ago Robert Osserman
started investigating a somewhat more restrictive
class of complete minimal surfaces, namely, those
for which the total curvature (i.e., the integral of
the Gaussian curvature) was finite. Osserman’s in-
vestigations eventually led to very tight constraints
for any possible new embedded example of such
a surface. Another decade passed before Celsoe
Costa, in his thesis, discovered an example of a fi-
nite-curvature minimal immersion of the square
torus with three punctures that fit all the known
constraints for it to be embedded. But the equa-
tions were so complicated that there seemed no
way to approach the problem of providing the an-
alytic details required for a rigorous demonstra-
tion that Costa’s surface had no self-intersections.
David Hoffman heard about the Costa example
in a telephone conversation with Osserman and
quickly decided to use computer graphics tech-
niques to attempt to visualize Costa’s surface well
enough to check whether it at least appeared to be
embedded and, if so, then perhaps also to see
some visual clues that might help prove embed-
dedness rigorously. Hoffman discussed his ideas
with William Meeks, who also became excited about
the possibility of using computers in such an in-
novative way. Working together with James Hoff-
man, an expert in computer graphics program-
ming, they were able to carry out this program over
the course of several weeks, during which they al-
ternated between staring at computer-generated
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images and finding rigorous proofs for the sur-
prising conjectures those pictures suggested. (See
Figure 1.) David Hoffman’s well-written article [H]
describing this project makes wonderful reading.
I can do no better than quote a little from his
telling of the story:

... we were able to create pictures of
the surface. They were imperfect ...
[Hlowever, Jim Hoffman and I could
see after one long night of staring at or-
thogonal projections of the surface
from a variety of viewpoints that it was
free of self-intersections. Also, it was
highly symmetric. This turned out to be
the key to getting a proof of embed-
dedness. Within a week, the way to
prove embeddedness was worked out.
During that time we used computer
graphics as a guide to “verify” certain
conjectures about the geometry of the
surface. We were able to go back and
forth between the equations and the
images. The pictures were extremely
useful as a guide to the analysis.

The article ends with these words:

The computer-created model is not re-
stricted to the role of illustrating the
end product of mathematical under-
standing, as the plaster models are.
They can be part of the process of doing
mathematics.

Software for Mathematical Visualization

My program, 3D-Filmstrip, is a mathematical vi-
sualization tool for Macintosh computers that is
written in Object Pascal. The principal goal that has
guided me in its development has been to make
available a wide variety of interesting mathemat-
ical visualizations from many areas of mathemat-
ics, using an interface that is easily accessible,
even to new users and nonprogrammers. One sim-
ply chooses an object from a pull-down menu (or
describes a “user object” by entering a few alge-
braic formulas) and then immediately sees a de-
fault view of that object. There are several menus
for customizing the view in various ways and an-
other for creating animations. For a more complete
description, including full documentation in hy-
pertext (HTML) format, visit the 3D-Filmstrip home
page on the Web {3dfs}.4 The home page also has
alink to a gallery of visualizations and QuickTime
animations produced using the program. Macintosh
users can obtain a copy for their personal use by

4References in curly brackets refer to Universal Resource
Locators (URLs) that will be found in the references at the
end of the article.
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Online Mathematics Visualization Software

{3dfs} 3D-Filmstrip Home Page,|http://rsp.math.]|
[brandeis.edu/public_html]

{Evol} Ken Brakke’s Surface Evolver Home Page,

http://www.susqu.edu/facstaff/b/brakke/

levolver/evolver, html

{Geom} Geomview Home Page, |http://www.geom.umn |
ledu/software/download/geomview. htm

{Grp} Grape Home Page, [http://www-sTb288.math.|
|tu-berlin.de/~konrad/grape/grape.html |

{Oor} Oorange Home Page, [http://www-sTb288.math.
[tu-berlin.de/oorange |

{Snap} SnapPea Home Page, |http://www.geom.umn.edu
[software/downToad/snappea.html]

{Sup} Superficies FTP Site, ftp://topologia.geomet.
uv.es/pub/montesin/Superficies_Folder/

{Surf} Surf Home Page,|http://www.mathematik.|

uni-mainz.de/AlgebraischeGeometrie/

surf/surf.shtml

{MLb} Mathworks (Matlab) Home Page,|http://www.|
Imathworks . com/products/matlab/|

{Mpl} Maple Home Page,http://www.maplesoft.on.ca/ |

{Wri} Wolfram Research (Mathematica) Home Page,
|http://www.wri.com/|

downloading it from a link on the home page or
using an ftp client aimed at:
ftp://rsp.math.brandeis.edu/pub/

As a developer of a particular mathematical vi-
sualization software package, I think it would be
inappropriate in an article such as this for me to
review other “competing” packages, so I will restrict
myself to listing some of the better-known ones,
with a few descriptive remarks about each.

There are a number of commercial software
packages with mathematical visualization capa-
bilities. Of these, perhaps the best known are The
Three M’s: Matlab {MLb}, Maple {Mpl}, and Mathe-
matica {Wri}. The standard licenses for these pro-
grams are expensive, but there are also inexpen-
sive student versions available, and many
universities have site licenses. These are not pri-
marily mathematical visualization programs. Maple
and Mathematica are symbolic manipulation pro-
grams, and Matlab is a numerical analysis pro-
gram, but all three have very good graphic back-
ends for displaying the results of their
computations, making them excellent platforms for
mathematical visualization. One minor drawback
is that each of these programs has its own pro-
gramming language that a user must learn in order
to do anything nontrivial with them. But these are
very high-level interpreted languages, and they
are considerably easier to learn and to use than the
standard compiled languages. An important point
in their favor is that there are versions of each for
Macintosh, Wintel, and various flavors of UNIX,
and software developed for any of these platforms
is readily transportable to the others.

Geomview {Geom} is not really a mathematical
visualization program in itself, but rather, as its
name suggests, a viewing program. To use it, the
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user must create a 2D or 3D object in a prescribed
format, either by writing a program to do so or by
using some program (such as Surface Evolver; see
below) that has a Geomview interface built in.
Grape {Grp} and Oorange {Oor} are similar to Ge-
omView, but they provide more tightly integrated
facilities for the creation of the mathematical con-
tent to be displayed. Competent C programmers
used to working on a UNIX workstation will prob-
ably find that using one of these programs provides
the easiest approach to creating sophisticated
mathematical visualizations on their own. But Mac
or Wintel users and those without programming
experience using a compiled language will proba-
bly be more comfortable working with one of the
commercial programs mentioned above.

I should also mention some special-purpose
mathematical visualization programs. There are
many programs for displaying solutions of ordi-
nary differential equations and analyzing them
for various dynamical systems-related properties
(closed orbits, limit cycles, etc.). Indeed, the use of
such programs is rapidly becoming an essential
component in the teaching of this subject. Some
of these programs are stand-alone, while others are
written to be used in conjunction with Matlab,
Maple, or Mathematica.

Creating visualizations of implicitly defined
curves and surfaces leads to many interesting
problems, both for the mathematician and for the
programmer. The need to solve the equations in-
volved numerically is one major difficulty. Con-
structing reliable and efficient algorithms for find-
ing all the solutions when there are no restrictions
on permitted singularities is not a completely
solved problem. This is so even for the important
special case of interest to algebraic geometers,
namely, when the objects in question are defined
as the solutions of polynomial equations. Another
difficulty is that implicitly defined surfaces do not
come equipped with a natural grid, and so special
techniques (such as so-called “ray-tracing” meth-
ods) must be used to render them. Because of
these challenges (and the importance of algebraic
geometry), it should come as no surprise that there
are a number of programs that specialize in dis-
playing implicit surfaces. On the Macintosh there
is Angel Montesinos Amilibia’s Superficies pro-
gram {Sup}. This has the kind of intuitive user in-
terface one expects from a Macintosh program; and
in addition to displaying a surface from a user-sup-
plied implicit equation, it will also draw geodes-
ics, asymptotic lines, and curvature lines on the sur-
face.> In the UNIX world, there is a program called
Surf, written by Stephen Endraf {Surf}. (Endraf
has made his source code available under the GNU
license.)

SI'would like to thank Angel Montesinos Amilibia for per-
mitting me to use some of his algorithms and code for han-
dling implicit curves and surfaces in 3D-Filmstrip.
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Two other notable special-purpose programs
are Jeff Weeks’s SnapPea {Snap}, for creating and
investigating 3-dimensional hyperbolic geome-
tries, and Ken Brakke’s Surface Evolver {Evol}, for
investigating the evolution of surfaces under var-
ious “energy”-minimizing gradient flows.

Why Write Mathematical Visualization
Software?

At this point I should confess that one of my goals
is to encourage others to become involved in build-
ing the Mathematical Exploratorium. The creation
of mathematical visualization software and content
is a relatively new and growing area, full of op-
portunities to make significant, original contribu-
tions. I work on mathematical visualization mainly
because I enjoy the challenge of making abstract
mathematical concepts “come alive” by imple-
menting them in software. But more than that, I
think of it as a new form of publication. Part of the
obligation (and joy) of the academic life is giving
some form of permanent expression to the ideas
we have thought hard about. That, after all, is what
we mean by publication.

Traditionally, mathematicians have satisfied
this obligation by writing books and research ar-
ticles, and these will no doubt continue to be the
primary form of mathematical communication. A
program is not a substitute for a theorem, and an
assistant professor worried about publishing
enough papers to qualify for tenure should prob-
ably think twice before becoming involved in a
time-consuming software project. Nevertheless,
as mathematics gets ever more complex, it be-
comes increasingly important to have good tools
to supplement our intuition and for communicat-
ing our intuitive ideas to others.

Until recently graphics systems powerful enough
to do interesting geometric modeling existed only
in a few centers that could afford the expensive
combination of hardware and software that such
systems required. Moreover, these systems re-
quired special proprietary hardware and drivers so
that they could not run even slowly on the stan-
dard Macintosh and PC-type workstations that
have become ubiquitous in academia. But the su-
percomputer of a decade ago was no more pow-
erful than today’s high-end Macs and PCs, and
very respectable mathematical visualization pro-
grams can now be written for these machines. The
time has clearly arrived to make the powerful geo-
metric modeling algorithms that have been devel-
oped in recent years more widely available to the
whole mathematical community. It is not easy.
The problem is not just to translate the code, but
also to create programs with good user interfaces
that are easy to use for someone other than the pro-
grammer. [ am hoping that 3D-Filmstrip will serve
as an early example of this kind of mathematical
visualization program, one that will stimulate oth-
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ers to create ever better software for giving life to
our mathematical imaginings.
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About the Cover

On the cover we see a portion of a minimal sur-
face, the whole of which extends to infinity.
Numerical data for parametrizing the surface
were created using MATLAB routines written by
H. Karcher, and then imported into 3D-Filmstrip
for rendering.

A minimal surface is a mathematical model
of a soap film, and this fact can be used to
compute it numerically: if a closed wire (to be
dipped into liquid soap) is described by a math-
ematical curve, then one can compute the span-
ning minimal surface numerically by simulat-
ing a characteristic property of a soap film,
namely that it attempts to “pull itself together”
(i.e., minimize its area).

Karcher’s numerical algorithm uses a dif-
ferent approach. It starts from the so-called
Weierstrass representation of a minimal surface,
coming from the field of complex analysis. This
has the advantage that the input data (two mero-
morphic functions on the parameter domain) are
closely related to the global geometry of the sur-
face. Moreover, it leads to an efficient and nu-
merically stable algorithm for computing the co-
ordinates of all points of the surface.

The particular surface on the cover is known
by the name “Karcher’s JE Saddle Towers”. (JE
refers to a particular Jacobi elliptic function
that is part of the Weierstrass data.) This sur-
face exhibits a Z @ Z group of translational
symmetries. Both generators are visually evi-
dent—one is a vertical translation and the other
is a translation in the direction of the horizon-
tal straight line that cuts the figure in half. (Ro-
tation by 180 degrees about that line is another
symmetry of the surface.) The two sides of the
surface have been given slightly different re-
flectivities. The top of the lower horizontal wing
appears lighter than the top of the wing above
it because these are on different sides of the sur-
face.

—H. Karcher and R. Palais
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