
LATTICE MODELS

Background

A “lattice model” is a system of differential equa-
tions which represents the motion of a network or
“lattice” of particles, where the motion is produced
by forces acting between adjacent particles. Phys-
ical examples could be the vibrations of atoms or
molecules in a substance, or the oscillations of an
arrangement of masses connected by springs. Math-
ematically, the motion is governed by a system of
ordinary differential equations (Newton’s equations).
As well as being natural examples, lattice models can
exhibit a wide spectrum of behaviours, providing in-
sight into the theory of differential equations.

One such example, the Fermi-Pasta-Ulam lattice,
was a starting point for research into “soliton equa-
tions”, a major theme which today spans several ar-
eas of pure and applied mathematics as well as physics.
It was one of the first “mathematical experiments”
made possible by the advent of electronic computers.
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Although it can be reproduced easily and quickly on
modern machines, it is still impressive and truly rep-
resents a mathematical phenomenon that cannot be
observed using only traditional pencil and paper cal-
culations. Further information about this experiment
is given below, and in the ATO for the FPU Lattice.

The examples considered here are all
one-dimensional lattices. This means a linearly ar-
ranged sequence of particles with each particle con-
nected to the next one by a spring. An alternative
(but mathematically equivalent) description of such
a system can be helpful: if the displacement of each
particle from its equilibrium position on the horizon-
tal axis is vertical instead of horizontal, the parti-
cles move in a wave-like fashion. The analogy with
wave motion — that a lattice can be considered as
a discrete approximation to a wave — is a useful aid
to visualization, and in fact there are deep mathe-
matical connections between lattice models and wave
equations.
Some mathematical terminology and assump-
tions

The basic mathematical ingredient is the differen-
tial equation y′′ = −ky, where k is a positive constant
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and y is the extension of a (stretched or compressed)
spring. This is Newton’s equation for the motion of a
particle of unit mass at the end of an ideal spring, the
spring being fixed at the other end. We assume that
the only force acting on the particle is the tension in
the spring, which is proportional to y by Hooke’s law.
For a lattice model this example is generalized in two
ways: there will be several particles (and springs),
and the tension will be a function T (y) which is not
necessarily linear.

To be precise, we consider a one-dimensional lat-
tice, where N particles of unit mass lie on a straight
line, and we denote their positions by

Y1(t), Y2(t), . . . , YN (t)

at time t. We assume that the force in the spring
connecting Yi to Yi+1 depends upon the extension of
the spring from an equilibrium position of the whole
lattice in which Yi = ei, and that e1 < · · · < eN .
Let yi = Yi − ei be the displacement of Yi from its
equilibrium position ei. Then the extension of the
spring at time t is yi+1(t)−yi(t), and our assumption
can be written
force on Yi from the spring connecting Yi to Yi+1 =
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T (yi+1 − yi)
for some function T (we assume the same function T
applies to all springs). The force on Yi+1 from the
same spring will be −T (yi+1 − yi).

When 1 < i < N , Newton’s equation for Yi is

(Y ′′
i =) y′′i = T (yi+1 − yi) − T (yi − yi−1),

and in the special case when Hooke’s law holds, so
that T (y) = ky for some positive constant k, it is

y′′i = kyi−1 − 2kyi + kyi+1.

For the cases i = 1 and i = N , the equations are
similar, but with appropriate “boundary conditions”.
For simplicity we consider only two cases: periodic
boundary conditions, i.e. y1 = yN , or zero boundary
conditions, i.e. y0 = yN+1 = 0 (this means that we
extend the lattice by adding an immovable particle at
each end). For the initial positions we take yi(0) = ai,
with e1+a1 < e2+a2 < · · · < eN +aN . For the initial
velocities we take Y ′

i (0) = y′i(0) = 0. In addition,
we assume that the equilibrium positions are equally
spaced, i.e. the natural length of each spring is the
same.
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How to view the demonstration

Choose a lattice model from the Lattice Models
menu. After clicking on the default demonstration to
stop it, choose Set Lattice Parameters from the Ac-
tion menu. Then select boundary conditions, initial
shape (the values of a1, . . . , aN ), and display style.
Longitudinal Display shows the “actual lattice”. To
see a wave-like representation of the lattice motion,
choose Transverse Display, which plots the values of
the function yi(t) vertically above the equilibrium po-
sition of the i-th particle and joins the resulting dots
by successive black lines. The blue lines have the
same meaning for the functions y′i(t).

Several numerical values can be entered or modi-
fied at the same time:
Lattice Length
Density: average mass per unit length
Vertical Scale Factor: this re-scales the Transverse
Display
Number of Nodes in Lattice: for a larger number of
nodes, i.e. particles, the motion of the lattice will
appear more “wave-like”
Width of Initial Pulse: applies when “sinusoidal” ini-
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tial shape is selected.
Time step-size: used for numerical solution of the sys-
tem of o.d.e. (for a larger step-size, numerical errors
are more likely to be significant)
Click OK to start the demonstration, which shows
the lattice moving in real time.
Further aspects: the energies of the normal
modes

To understand the different kinds of behaviour of
lattice models it is necessary to introduce some prac-
tical criteria. The red, green and blue displays in the
left hand corner of the Transverse Display provide
one such, the energies of the normal modes. (These
displays can be turned on by choosing Show Normal
Mode Display from the Action menu.) If the Trans-
verse Display is regarded as an approximation to a
wave, the normal modes would be the Fourier com-
ponents of that wave. The precise meaning of these
displays will be explained next (see also the ATOs for
the Fermi-Pasta-Ulam lattice and the Toda lattice).

First consider the linear case: take T (y) = y in the
User Lattice Model1 (or T (y) = ky for any positive

1The internal force is−T (d) in 3D-XplorMath, so−d should
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number k). The system

y′′i = T (yi+1 − yi)− T (yi − yi−1) = yi+1 − 2yi + yi−1

can be transformed by a change of variable to a “di-
agonal” system

z′′l = λlzl

(because the matrix of coefficients is a symmetric ma-
trix). Thus, although the oscillations of the particles
of the lattice are “coupled”, they become uncoupled
when viewed in terms of the new variables zl. In
other words, the motion of this lattice is mathemati-
cally equivalent to the motion of N independent ideal
springs. The total energy 1

2z′l
2 −λlz

2
l (kinetic energy

plus potential energy) of each spring is a constant,
independent of time, which depends only on the ini-
tial position and velocity. It is called the energy of
the l-th normal mode.

The red, green and blue display in the left hand
corner shows the values of the kinetic energy (red bar)
and the potential energy (green bar) of each normal
mode, at each moment in time. Although these vary,

be entered in the internal force box.
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their sum remains constant, for each normal mode.
Note that the l-th normal mode does not refer to
the l-th particle; it refers to motion of the lattice in
which zl varies but z1, . . . , zl−1, zl+1, . . . , zN are con-
stant. For example, if the initial shape of the trans-
verse display is sinusoidal, only one normal mode is
“excited”, but to produce this kind of motion almost
all particles of the lattice have to move.

Now consider the nonlinear case. Although the dif-
ferential equations make sense for any nonlinear func-
tion T (y), it is natural to consider first the situation
where the particles are disturbed only slightly from
their equilibrium positions, and where T (y) is approx-
imately ky when y is small. (In fact the theory of
lattice models has been developed primarily with this
situation in mind, and we shall focus on this.) For
example, take T (y) = y+0.5y2 or T (y) = y+0.5 sin y
in the User Lattice Model2. The effect of the nonlin-
earity is noticeable: the energies of the normal modes
are no longer constant. Mathematically, this is not
surprising, as there is no reason to expect them to be
constant in the nonlinear case. All that can be said is
that the sum of all the normal mode energies — the

2Enter −d−0.5d2 or −d−0.5 sin d in the internal force box.
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total area of the red and green bars — is constant,
because this is the total energy of the whole lattice
(a conservative system).

(There is a sublety concerning the definition of the
energies of the normal modes, as the definition given
earlier only applies in the linear case. If we only con-
sider small displacements of the lattice, however, it
suffices to use the energies of the normal modes of the
linearization, and this is what the demonstration is
showing. For motion with large displacements, there-
fore, the Normal Mode Display has no relevance.)

The behaviour of the energies of the normal modes
is a criterion for studying lattice models. A subsidiary
criterion is the time average of the total energy of each
normal mode, which is measured by the blue bars in
the display. Initially the height of each blue bar is
equal to the sum of the heights of the correspond-
ing red and green bars, but as time passes the blue
bars indicate the relative “importance” of the vari-
ous normal modes. For a lattice with many particles,
the “typical” behaviour of the blue bars is that, af-
ter a sufficiently long period of time, they all settle
down to approximately the same value. A mathe-
matical analysis of this phenomenon is quite difficult
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(see [Pa]), but there is a compelling physical reason.
Namely, in the absence of any special features (such
as linearity), a nonlinear system with many degrees
of freedom should behave increasingly randomly, like
the molecules in a gas: a particle with greater than
average energy will tend to lose energy through its
interactions with its neighbours, and conversely for
a particle with less than average energy. In physics,
this behaviour is called thermalization.

By trying various nonlinear forces in the User Lat-
tice Model this hypothesis — and many other hy-
potheses about the energies of the normal modes —
can be tested. On the other hand, certain choices
of forces give surprisingly different resuls — see the
ATOs for the Fermi-Pasta-Ulam lattice and the Toda
lattice.
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