
The Korteweg-de Vries Equation*

NOTE: For a fuller understanding of the following, you may find it helpful to first read

“About This Category” from the Documentation Menu and “Introduction to Wave Equations”

from its Topics submenu.

The partial differential equation,

ut(x, t) + u(x, t)ux(x, t) + uxxx(x, t) = 0

for a real-valued function, u, of two real variables x and t
(space and time) is known as the Korteweg-de Vries Equa-
tion (or simply KdV). It was first derived in 1895 by D.J.
Korteweg and G. de Vries to model water waves in a shal-
low canal. Their goal was to settle a long-standing ques-
tion; namely whether a solitary wave could persist under
those conditions. Based on personal observations of such
waves in the 1830’s, the naturalist John Scott Russell in-
sisted that such waves do occur, but several prominent
mathematicians, including Stokes, were convinced they were
impossible.

Korteweg and de Vries proved Russell was correct by find-
ing explicit, closed-form, traveling-wave solutions to their
equation that moreover decay rapidly spatially, and so rep-
resent a highly localized moving lump. In fact, they found
a one-parameter family of such solutions:

u(x, t) = 2a2sech 2(a(x− 4a2t), (in 3DXM: a = cc)

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/

1



and these are the traveling wave solutions whose evolu-
tions are displayed by 3D-XplorMath, with its parameter
cc playing the rôle of the constant a. Note that the wave’s
velocity, 4a2, is proportional to its amplitude, 2a2, mean-
ing that the taller waves of this family move faster. Both
the fact that such a solution to a non-linear equation could
exist and that one could write it in explicit form were
later recognized to be highly important, although origi-
nally these facts were relatively unnoticed.

The KdV equation did not receive significant further at-
tention until 1965, when N. Zabusky and M. Kruskal pub-
lished results of their numerical experimentation with the
equation. Their computer generated approximate solu-
tions to the KdV equation indicated that any localized
initial profile, when allowed to develop according to KdV,
asymptotically in time evolved into a finite set of localized
traveling waves of the same shape as the original solitary
waves discovered in 1895. Furthermore, when two of the lo-
calized disturbances collided, they would emerge from the
collision as another pair of traveling waves with a shift in
phase as the only consequence of their interaction *. Since
the “solitary waves” which made up these solutions seemed
to behave like particles, Zabusky and Kruskal coined the
name “soliton” to describe them. The formula

u(x, t) =
12 gg (3 + 4 cosh(2x− 8t) + cosh(4x− 64t)p

(3 cosh(x− 28t) + cosh(3x− 36t))

* To see this phase shift, choose Display as Graph from the Action Menu.
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is one of these solutions, consisting of two lumps and there-
for called two-soliton solution of KdV, and it is one of the
KdV solutions whose evolution can be displayed using 3D-
XplorMath. Shortly after that, another remarkable dis-
covery was made concerning KdV; a paper by C. Gardner,
J. Greene, M. Kruskal, and R. Miura demonstrated that
it was possible to derive many exact solutions to the equa-
tion by using ideas from scattering theory. In particular,
the solutions whose evolution are shown by 3D-XplorMath
are exact solutions that can be found by this method.

Using modern terminology, we could say that these authors
showed that KdV was an integrable non-linear partial dif-
ferential equation. It was the first to be discovered, but
since then, many other such equations have been found
to be integrable and admit soliton solutions, in particu-
lar the Sine-Gordon Equation (SGE) and the Nonlinear
Schrödinger Equation (NLS)—solutions to both of which
are also shown by 3D-XplorMath. However, KdV is usu-
ally considered the canonical example, in part because it
was the first equation known to have these properties.

Alex Kasman
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