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1 Wave Equations

1.1 Introduction

In this introduction to wave equations, we will for
simplicity consider only the case of a single space
dimension. What we mean by a wave equation will
be made precise as we proceed, but initially, we will
just mean a certain kind of ordinary differential
equation in the space of smooth (i.e., C∞) Rn or
Cn valued functions u(x) of a real variable x, so a
wave equation will look like:

(∗) ut = f(u),

where u signifies a point of C∞(R, V ), (V = Rn or
Cn), ut means du

dt , and f is a special kind of map
of C∞(R, V ) to itself; namely a “partial differen-
tial operator”, i.e., f(u)(x) is a smooth function
F (u(x), uxi

(x), uxixj
(x), . . .) of the values of u and

certain of its partial derivatives at x—in fact, the
function F will generally be a polynomial. A so-
lution of (∗) is a smooth curve u(t) in C∞(R, V )
such that, if we write u(t)(x) = u(x, t), then

∂u

∂t
(x, t) = F

(
u(x, t),

∂u

∂xi
(x, t),

∂2u

∂xi∂xj
(x, t), . . .

)
.

We will study the so-called “Cauchy Prob-
lem” for such partial differential equations, i.e.,
the problem of finding a solution, in the above
sense, with u(x, 0) some given element u0(x) of
C∞(R, V ). So far, this should more properly be
called simply an “evolution equation”, since in gen-
eral such equations will describe evolving phenom-
ena that are not wave-like in character, and only
after certain additional assumptions are made con-
cerning F is it appropriate to call it a wave equa-
tion.

We will be interested in the obvious questions
of existence, uniqueness, and general properties of
solutions of the Cauchy problem, but even more it
will be the nature and properties of certain spe-
cial solutions that will concern us. In particu-
lar we will try to understand the mechanism be-
hind the remarkable behavior of what are called

soliton solutions of certain special wave equations
such as the Korteweg de Vries Equation (KdV),
the Sine-Gordon Equation (SGE), the Nonlinear
Schrödinger Equation (NLS), and other so-called
“integrable equations”.

As well as first order ODE on C∞(R, V ) we
could also consider second and higher order ODE,
but these can be easily reduced to first order ODE
by the standard trick of adding more dependent
variables. For example, to study the classic wave
equation in one space dimension, utt = c2uxx, a
second order ODE, we can add a new independent
variable v and consider instead the first order sys-
tem ut = v, vt = c2uxx (which we can put in the
form (*) by writing Ut = F (U), with U = (u, v),
F (u, v) = (v, c2uxx)).

1.2 Travelling Waves and Plane Waves

Let’s recall the basic intuitive idea of what is meant
by “wave motion”. Suppose that u(x, t) repre-
sents the “strength” or “amplitude” of some phys-
ical quantity at the spatial point x and time t.
For example, if you think of u as representing
the height of water in a canal, then the graph
of u0(x) = u(x, t0) gives a snapshot of u at time
t0, and we can understand the evolution of u in
time as representing the propagation of the shape
of this graph. In other words, for t1 close to t0,
the shape of the graph of u1(x) = u(x, t1) near x0

will be related in some simple way to the shape of
u0 near x0. Perhaps the simplest example of this
is a so-called travelling wave, namely a u of the
form u(x, t) = f(x− ct), where f : R→ V defines
the wave shape, and c is a real number defining
the propagation speed of the wave. If we define
the profile of the wave at time t to be the graph of
the function x 7→ u(x, t), then the initial profile (at
t = 0) is just the graph of f , and at any later t,
the profile at time t is obtained by translat-
ing each point (x, f(x)) of the initial profile
ct units to the right to the point (x+ct, f(x)).
So, the wave profile of a travelling wave just prop-
agates by rigid translation with velocity c. As we
will see below, the general solution of the equation
ut = cux is an arbitrary travelling wave moving
with velocity c, and that the general solution to
the equation utt = c2uxx is the sum (or “super-
position”) of two arbitrary travelling waves, both
moving with speed |c|, but in opposite directions.
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There is a special kind of complex-valued trav-
elling wave, called a plane wave, that plays a fun-
damental rôle in the theory of linear wave equa-
tions. The general form of a plane wave is u(x, t) =
Aeiφei(kx−ωt), where A is a positive constant called
the amplitude, φ ∈ [0, 2π) is called the initial
phase, and k and ω are two real parameters called
the wave number and angular frequency . (Note
that k

2π is the number of waves per unit length,
while ω

2π is the number of waves per unit time.)

Rewriting u as u(x, t) = Aeiφeik(x−ω
k t), we see it

is indeed a travelling wave of velocity is ω
k .

In studying a wave equation, a first step is to
find all travelling wave solutions (if any) it admits.
For a constant coefficient linear wave equation we
will see that for each wave number k there is a
unique angular frequency ω(k) for which the equa-
tion admits a plane wave solution, and the veloc-

ity ω(k)
k of this plane wave as a function of k (the

so-called dispersion relation of the equation) com-
pletely determines the equation, and is crucial for
understanding how solutions disperse as time pro-
gresses. Also, the fact that there is a unique (up to
a multiplicative constant) travelling wave solution
uk(x, t) = ei(kx−ω(k)t) with wave number k allows
us to solve the equation explicitly by representing
the general solution as a superposition of these so-
lutions uk. This in essence is the Fourier method.

For nonlinear wave equations, travelling wave so-
lutions are in general severely restricted. Usually
only very special profiles, characteristic of the par-
ticular equation, are possible for travelling wave
solutions, and in particular they do not normally
admit any plane wave solutions.

1.3 Some Model Equations

Perhaps the most familiar of all wave equation is
The Classic Wave Equation utt − c2uxx = 0.
As we saw above, we can reduce this to a standard
first-order evolution equation by replacing the one-
component vector u by a two-component vector
(u, v) satisfying (u, v)t = (v, c2uxx), i.e., ut = v
and vt = c2uxx. To solve the Cauchy problem for
the Classic Wave Equation, factor the wave opera-

tor, ∂2

∂t2 − c
2 ∂2

∂x2 , as a product( ∂∂t − c
∂
∂x )( ∂∂t + c ∂∂x ),

and transform to so-called “characteristic coordi-
nates”, ξ = x − ct, η = x + ct. The equation

becomes ∂2u
∂ξ∂η = 0, that clearly has the general so-

lution u(ξ, η) = F (ξ) + G(η). Transforming back
to “laboratory coordinates” x, t, the general solu-
tion is u(x, t) = F (x−ct)+G(x+ct). If the initial
shape of the wave is u(x, 0) = u0(x) and its initial
velocity is ut(x, 0) = v(x, 0) = v0(x), then an easy
algebraic computation gives the following very ex-
plicit formula:

u(x, t) =
1

2
[u0(x−ct)+u0(x+ct)]+

1

2c

∫ x+ct

x−ct
v0(ξ) dξ,

known as “D’Alembert’s Solution” of the Cauchy
Problem for the Wave Equation. Note the geo-
metric interpretation in the important “plucked
string” case, v0 = 0; the initial profile u0 breaks
up into the sum of two travelling waves, both with
the same profile u0/2, and one travels to the right,
and the other to the left, both with speed c.

Exercise 1.3.1. Derive D’Alembert’s solution.
(Hint: u0(x) = F (x) + G(x), so u′0(x) = F ′(x) +
G′(x), while v0(x) = ut(x, 0) = −cF ′(x)+cG′(x).)

Remark 1.3.2. There are a number of important
consequences that follow easily from the form of
the D’Alembert solution:

a) The solution is well-defined for initial condi-
tions (u0, v0) in the space of distributions, and
gives a flow on this much larger space.

b) The quantity
∫∞
−∞ |ux|

2 + (1
c )2|ut|2 dx is a

“constant of the motion”. More precisely, if
this integral is finite at one time for a solution
u(x, t), then it is finite and has the same value
at any other time.

c) The “domain of dependence” of a point (x, t)
of space-time consists of the interval [x−ct, x+
ct]. That is, the value of any solution u at
(x, t) depends only on the values u0 and v0 in
the interval [x − ct, x + ct]. Another way to
say this is that the “region of influence” of a
point x0 consists of the interior of the “light-
cone” with vertex at x0, i.e., all points (x, t)
satisfying x0 − ct < x < x0 + ct. (These are
the points having x0 in their domain of depen-
dence.) Still a third way of stating this is that
the Classical Wave Equation has signal prop-
agation speed c, meaning that the value of a
solution at (x, t) depends only on the values
of u0 and v0 at points x0 from which a sig-
nal propagating with speed c could reach x in
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time t (i.e., points inside the sphere of radius
ct about x.)

Exercise 1.3.3. Prove b) of the above Remark.
(Hint: |ux(x, t)|2 + ( 1

c )2|ut(x, t)|2 = 2(|F ′(x −
ct)|2 + |G′(x+ ct)|2).)

Our next model equation is The Linear Ad-
vection Equation, ut − cux = 0. Using again
the trick of transforming to the above coordinates,
ξ, η, the equation becomes ∂u

∂ξ = 0, so the gen-

eral solution is u(ξ) = constant, so the solution to
the Cauchy Problem is u(x, t) = u0(x − ct). As
before we see that if u0 is any distribution then
u(t) = u0(x− ct) gives a well-defined curve in the
space of distributions that satisfies ut − cux = 0,
so that we really have a flow on the space of distri-
butions whose generating vector field is c ∂∂x . Since

c ∂∂x is a skew-adjoint operator on L2(R), it follows
that this flow restricts to a one-parameter group of
isometries of L2(R), i.e.,

∫∞
−∞ u(x, t)2 dx is a con-

stant of the motion.

Exercise 1.3.4. Prove directly that
d
dt

∫∞
−∞ u(x, t)2 dx is zero. (Hint: It suffices

to show this when u0 is smooth and has com-
pact support, since these are dense in L2. For
such functions we can rewrite the integral as∫∞
−∞

∂
∂tu(x, t)2 dx and the result will follow if we

can show that ∂
∂tu(x, t)2 can be written for each

t in the form d
dxh(x), where h is smooth and has

compact support.)

Remark 1.3.5. Clearly the domain of dependence
of (x, t) is now just the single point x − ct, the
region of influence of x0 is the line x = x0 + ct,
and the signal propagation speed is again c.

Exercise 1.3.6. (Duhamel’s Principle.) The ho-
mogeneous Linear Advection Equation describes
waves moving to the right in a non-dispersive and
and non-dissipative one-dimensional linear elastic
medium when there are no external forces acting
on it. (The italicised terms will be explained later.)
If there is an external force, then the appropri-
ate wave equation will be an inhomogeneous ver-
sion of the equation, ut − cux = F (x, t). Show
that the Cauchy Problem now has the solution
u(x, t) = u0(x− ct) +

∫ t
0
F (x− ct+ cξ, ξ) dξ.

Next, let’s consider the General Linear Evo-
lution Equation, ut + P ( ∂

∂x )u = 0. Here P (ξ)

is a polynomial with complex coefficients. For ex-
ample, if P (ξ) = −cξ then we get back the Linear
Advection Equation. We will outline the theory
of these equations in a separate section below and
see that they can analyzed easily and completely
using the Fourier Transform. (It will turn out that
to qualify as a wave equation, the odd coefficients
of the polynomial P should be real and the even
coefficients pure imaginary, or more simply, P (iξ)
should be imaginary valued on the real axis. This
is the condition for P ( ∂

∂x ) to be a skew-adoint op-
erator on L2(R).)

Our next family of model equations is the The
General Conservation Law, ut = (F (u))x.
Here F (u) can any smooth function of u and its
partial derivatives with respect to x. For exam-
ple, if P (ξ) = a1ξ + · · · + anξ

n, we get the lin-
ear evolution equation ut = P ( ∂

∂x )u by taking

F (u) = a1u + · · · + an
∂n−1u
∂xn−1 . On the other hand,

F (u) = −( 1
2u

2 + δ2uxx) gives the KdV equation
ut+uux+δ2uxxx = 0 that we consider below. Note
that if F (u(x, t)) vanishes at infinity then integra-
tion gives d

dt

∫∞
−∞ u(x, t) dx = 0, i.e.,

∫∞
−∞ u(x, t) dx

is a “constant of the motion”, and this is where
the name “Conservation Law” comes from. We
will be concerned mainly with the case that F (u)
is a zero-order operator, i.e., F (u)(x) = F (u(x)),
where F is a smooth function on R. In this case,
if we let f = F ′, then we can write our Conserva-
tion Law in the form ut = f(u)ux. In particular,
taking f(ξ) = c (i.e., F (ξ) = cξ) gives the Linear
Advection Equation ut = cux, while F (ξ) = − 1

2ξ
2

gives the important Inviscid Burgers Equation,
ut + uux = 0 that we will meet again later.

There is a very beautiful and highly developed
theory of such Conservation Laws, and again we
will devote a separate subsection to outlining some
of the basic results from this theory. Recall that
for the Linear Advection Equation we have an ex-
plicit solution for the Cauchy Problem, namely
u(x, t) = u0(x − ct), which we can also write as
u(x, t) = u0(x−f(u(x, t))t), where f(ξ) = c. If we
are incredibly optimistic we might hope that we
could more generally solve the Cauchy Problem for
ut = f(u)ux by solving u(x, t) = u0(x−f(u(x, t))t)
as an implicit equation for u(x, t). This would
mean that we could generalize our algorithm for
finding the profile of u at time t from the initial
profile as follows: translate each point (ξ, u0(ξ)) of
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the graph of u0 to the right by an amount f(u0(ξ))t
to get the graph of x 7→ u(x, t). This would of
course give us a simple method for solving any
such Cauchy Problems, and the amazing thing
is that this bold idea actually works. How-
ever, one must be careful. As we shall see, this
algorithm, that goes by the name the method of
characteristics, contains the seeds of its own even-
tual failure. For a general initial condition u0 and
function f , we shall see that we can predict a pos-
itive time TB (the so-called “breaking time”) after
which the solution given by the method of char-
acteristics can no longer exist as a smooth, single-
valued funtion.

The Korteveg-de Vries (or KdV) Equation
ut + uux + δ2uxxx = 0. If we re-scale the indepen-
dent variables by t → βt and x → γx, then the
KdV equation becomes:

ut+
(
β

γ

)
uux+

(
β

γ3

)
δ2uxxx = 0,

and by appropriate choice of β and γ we can obtain
any equation of the form ut + λuux + µuxxx = 0,
and any such equation is referred to as “the KdV
equation”. Common choices, convenient for many
purposes, are ut ± 6uux + uxxx = 0 and we will
use both. This is one of the most important and
most studied of all evolution equations. It is over
a century since it was shown to govern wave mo-
tion in a shallow channel, but less than forty years
since the remarkable phenomenon of soliton inter-
actions was discovered in the course of studying
certain of its solutions. Shortly thereafter the so-
called Inverse Scattering Transform (IST) for solv-
ing the KdV equation was discovered and the equa-
tion was eventually shown to be an infinite dimen-
sional completely integrable Hamiltonian system.
This equation, and its remarkable properties will
be one of our main objects of study.

The second order equation utt − uxx = sin(u) is
called the The Sine-Gordon Equation or SGE.
It is considerably older than KdV, having ben dis-
covered in the late eighteen hundreds to be the
master equation for the understanding of “pseudo-
spherical” surfaces, i.e., surfaces of Gaussian cur-
vature K equal to −1 immersed in R3, and for that
reason it was intensively studied (and its solitons
discovered, but not recognized as such) long before
KdV was even known. However it was only in the

course of trying to find other equations that could
be solved by the IST that it was realized that SGE
was also a integrable equation.

The Nonlinear Schrödinger Equation or
NLS, iut + uxx + u|u|2 = 0 is of more recent ori-
gin, and was the third evolution equation shown
to have soliton behavior and to be integrable. Re-
cently it has been intensively studied because it
describes the propagation of pulses of laser light in
optical fibers. The latter technology that is rapidly
becoming the primary means for long-distance,
high bandwidth communication, which in turn is
the foundation of the Internet and the World Wide
Web.

1.4 Linear Wave Equations; Disper-
sion and Dissipation

Evolution equations that are not only linear but
also translation invariant can be solved explicitly
using Fourier methods, and are interesting both
for their own sake, and also because they serve as
a tool for studying nonlinear equations.

The general linear evolution equation has the
form ut + P ( ∂

∂x )u = 0, where to begin with we
can assume that the polynomial P has coefficients
that are smooth complex-valued functions of x

and t: P ( ∂
∂x )u =

∑r
i=1 ai(x, t)

∂iu
∂xi . For each

(x0, t0), we have a space-time translation opera-
tor T(x0,t0) acting on smooth functions of x and t
by T(x0,t0)u(x, t) = u(x − x0, t − t0), and we say

that the operator P ( ∂
∂x ) is translation invariant if

it commutes with all the T(x0,t0).

Exercise 1.4.1. Show that the necessary and suf-
ficient condition for P ( ∂

∂x ) to be translation in-
variant is that the coefficients ai of P should be
constant complex numbers.

1.4.2. Invariance Principles

There are at least two excellent reasons to as-
sume that our equation is translation invariant.
First, the eminently practical one that in this case
we can use Fourier techniques to solve the initial
value problem explicitly and investigate the solu-
tions in detail.

But there is frequently an even more important
physical reason for postulating translation invari-
ance. If we are trying to model the dynamics of
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a fundamental physical field quantity u by an evo-
lution equation of the above type, then x will de-
note the “place where”, and t the “time when”
the quantity has the value u(x, t). Now, if our
proposed physical law is truly “fundamental”, its
validity should not depend on where or when it is
applied—it will be the same on Alpha Centauri as
on Earth, and the same in a million years as it is
today—we can even take that as part of the defi-
nition of what we mean by fundamental. The way
to give a precise mathematical formulation of this
principle of space-time symmetry or homogeneity
is to demand that our equation should be invariant
under some transitive group acting on space and
time.

In any case, we will henceforth assume that P
does in fact have constant complex numbers as co-
efficients. If we substitute the Ansatz u(x, t) =
ei(kx−ωt) into our linear equation, ut+P ( ∂

∂x )u = 0,
then we find the relation −iωu + P (ik)u = 0, or
ω = ω(k) := 1

iP (ik). For u(x, t) to be a plane
wave solution, we need the angular frequency, ω,
to be real. Thus, we will have a (unique) plane
wave solution for each real wave number k just
when 1

iP (ik) is real (i.e., P (ik) is imaginary) for k
on the real axis. This just translates into the con-
dition that the odd coefficients of P should be real
and the even coefficients pure imaginary, and we
assume this in what follows. As we shall see, one
consequence will be that we can solve the initial
value problem for any initial condition u0 in L2,
and the solution is a superposition of these plane
wave solutions—clearly a strong reason to consider
this case as describing honest “wave equations”,
whatever that term should mean.

The relation ω(k) := 1
iP (ik) relating the angu-

lar frequency ω and wave number k of a plane wave
solution of a linear wave equation is called the dis-
persion relation for the equation. The propagation
velocity of the plane wave solution with wave num-
ber k is called the phase velocity at wave number

k, given by the formula ω(k)
k = 1

ikP (ik) (also some-
times referred to as the dispersion relation of the
equation). Note that the dispersion relation is not
only determined by the polynomial P defining the
evolution equation, but conversely determines it.

Now let u0 be any initial wave profile in
L2, so u0(x) =

∫
û0(k)eikx dk, where û0(k) =

1
2π

∫
u0(x)e−ikx dk is the Fourier Transform of u.

If we define û(k, t) = e−P (ik)tû0(k), we see that

û(k, t)eikx = û0(k)eik(x−ω(k)
k t) is a plane wave

solution to our equation with initial condition
û0(k)eikx. We now define u(x, t) (formally) to be
the superposition of these plane waves: u(x, t) ∼∫
û(k, t)eikx dk. So far we have not used the fact

that P (ik) is imaginary for k real, and we now no-
tice that it implies |e−P (ik)t| = 1, so |û(k, t)| =
|û0(k)|, hence û(k, t) is in L2 for all t, and in fact
it has the same norm as û0. It then follows from
Plancherel’s Theorem that u(x, t) is in L2 for all t,
and has the same norm as u0. It is now elemen-
tary to see that our formal solution u(x, t) is in
fact an honest solution of the Cauchy Problem for
our evolution equation, and in fact defines a one-
parameter group of unitary transformations of L2.

[ We next consider briefly what can happen if we
drop the condition that the odd coefficients of P
are real and the even coefficients pure imaginary.
Consider first the special case of the Heat (or Dif-
fusion) Equation, ut−αuxx = 0, with α > 0. Here

P (x) = −αX2, so |e−P (ik)t| = |e−k2t|. Thus, when
t > 0, |e−P (ik)t| < 1, and |û(k, t)| < |û0(k)|, so
again u(k, t) is in L2 for all t, but now ‖u(x, t)‖L2 <
‖u0(x)‖L2 . Thus our solution is not a unitary flow
on L2, but rather a contracting, positive semi-
group. In fact, it is easy to see that for each initial
condition u0 ∈ L2, the solution tends to zero in
L2 exponentially fast as t → ∞, and in fact it
tends to zero uniformly too. This so-called dissi-
pative behavior is clearly not very “wave-like” in
nature, and the Heat Equation is not considered
to be a wave equation. It is not hard to extend
this analysis for the Heat Equation to any mono-
mial P : P (X) = anX

n, where an = α+ iβ. Then

|e−P (ik)t| = |einαt||ein+1βt|. If n = 2m is even, this
becomes |e(−1)mαt|, while if n = 2m + 1 is odd,

it becomes |e(−1)(m+1)βt|. If α (respectively β) is
zero, we are back to our earlier case that gives a
unitary flow on L2. If not, then we get essentially
back to the dissipative semi-flow behavior of the
heat equation. Whether the semi-flow is defined
for t > 0 or t < 0 depends on the parity of m and
the sign of α (repectively β).]

We now return to our assumption that P (D) is
a skew-adjoint operator, i.e., the odd coefficients of
P (X) are real and the even coefficients pure imag-
inary, and note next that this seemingly ad hoc
condition is actually equivalent to a group invari-
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ance principle, similar to translation invariance.

1.4.3. Symmetry Principles in General—
and CPT in Particular.

One of the most important ways to single out im-
portant and interesting model equations for study
is to look for equations that satisfy various symme-
try or invariance principles. Suppose our equation
is of the form E = 0 where E is some differential
operator on a linear space F of smooth functions,
and we have some group G that acts on F . Then
we say that the equation is G-invariant (or that G
is a symmetry group for the equation) if the opera-
tor E commutes with the elements of G. Of course
it follows that if u ∈ F is a solution of E = 0, then
so is gu for all g in G.

As we have already noted, the evolution equa-
tion ut + P (D)u = 0 is clearly invariant un-
der time translations, and is invariant under spa-
tial translations if and only if the coefficients of
the polynomial P (X) are constant. Most of the
equations of physical interest have further symme-
tries, i.e., are invariant under larger groups, reflect-
ing the invariance of the underlyng physics under
these groups. For example, the equations of pre-
relativistic physics are Gallilean invariant, while
those of relativistic physics are Lorentz invariant.
We will consider here a certain important discrete
symmetry that so far has proved to be universal in
physics.

We denote by T the “time-reversal” map
(x, t) → (x,−t), and by P the analogous “parity”
or spatial reflection map (x, t) → (−x, t). These
involutions act as linear operators on functions on
space-time by u(x, t) → u(x,−t) and u(x, t) →
u(−x, t) respectively. There is a third important
involution, that does not act on space-time, but
directly on complex-valued functions; namely the
conjugation operator C, mapping u(x, t) to its
complex conjugate u(x, t)∗. Clearly C, P, and T
commute, so their composition CPT is also an in-
volution u(x, t) → u(−x,−t)∗ acting on complex-
valued functions defined on space-time. We note
that CPT maps the function u(x, t) = ei(kx−ωt)

(with real wave number k) to the function u(x, t) =
ei(kx−ω

∗t), so it fixes such a u if and only if u is a
plane wave.

Exercise 1.4.4. Prove that ut + P (D)u = 0 is
CPT-invariant if and only if P (D) is skew-adjoint,
i.e., if and only if P (iξ) is pure imaginary for

all real ξ. Check that the KdV, NLS, and Sine-
Gordon equation are also CPT-invariant.

1.4.5. Some Examples of Linear Evolution
Equations

Choosing P (ξ) = cξ, gives the Linear Advection
Equation ut + cux = 0, with dispersion relation
ω(k)
k = P (ik)

ik = c, i.e., all plane wave solutions
have the same phase velocity c. For this example
we see that û(k, t)eikx = û0(k)eik(x−ct), and since∫
û0(k)eikx dk = u0(x), it follows that

u(x, t) =

∫
û(k, t)eik(x−ct) dk = u0(x− ct),

giving an independent derivation of the explicit so-
lution to the Cauchy Problem in this case.

The next obvious case to consider is P (ξ) =

cξ + dξ3, giving the dispersion relation ω(k)
k =

P (ik)
ik = c(1 − (d/c)k2), and the wave equation

ut + cux + duxxx = 0. This is sometimes re-
ferred to as the “weak dispersion” wave equation.
Note that the phase velocity at wave number k
is a constant, c, plus a constant times k2. It
is natural therefore to transform to coordinates
moving with velocity c, i.e., make the substitu-
tion x 7→ x − ct, and the wave equation becomes
ut + duxxx = 0. Moreover, by rescaling the inde-
pendent variable x, we can make d = 1, and this
leads us to our next example, P (ξ) = ξ3. This
gives the equation ut + uxxx = 0, and now the
dispersion relation is non-trivial; plane wave solu-
tions with wave number k move with phase velocity
ω(k)
k = P (ik)

ik = −k2, so the Fourier components

û0(k)eik(x+k2t) of u(x, t) with a large wave num-
ber k move faster than those with smaller wave
number, causing an initially compact wave profile
to gradually disperse as these Fourier modes move
apart and start to interfere destructively.

Remark 1.4.6. For a constant coefficient linear
wave equation ut + P ( ∂

∂x )u = 0, the solution,
p(x, t), of the Cauchy Problem with p(x, 0) = δ(x)
is called the Fundamental Solution or Propagator
for the equation. It follows that the solution to
the Cauchy problem for a general initial condition
is given by convolution with p, i.e., by

u(x, t) =

∫ ∞
−∞

p(x− ξ, t)u0(ξ) dξ.
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Exercise 1.4.7. (General Duhamel Principle)
Suppose p is the fundamental solution for the
homogeneous wave equation ut + P ( ∂

∂x )u = 0.
Show that the solution to the Cauchy Problem
for the corresponding inhomogeneous equation
ut + P ( ∂

∂x )u = F (x, t) is given by:∫∞
−∞ p(x− ξ, t)u0(ξ) dξ+∫ t

0
dτ
∫∞
−∞ p(x− ξ, t− τ)F (ξ, τ) dξ.

Before leaving linear wave equations we should
say something about the important concept of
group velocity . We consider an initial wave packet,
u0, that is synthesized from a relatively nar-
row band of wave numbers, k, i.e., u0(x) =∫ k0+ε

k0−ε û0(k)eikx dk. Thus the corresponding fre-

quencies ω(k) will also be restricted to a narrow
band around ω(k0), and since all the plane wave
Fourier modes are moving at approximately the

velocity ω(k0)
k0

, the solution u(x, t) of the Cauchy
Problem will tend to disperse rather slowly and
keep an approximately constant profile f , at least
for a short initial period. One might expect that
the velocity at which this approximate wave profile

moves would be ω(k0)
k0

, the central phase velocity,
but as we shall now see, it turns out to be ω′(k0).
To see this we expand (kx−ω(k)t) in a Taylor se-
ries about k0:
(kx − ω(k)t) = (k0x − ω(k0)t) + (k − k0)(x −
ω′(k0)t) +O((k − k0)2), and substitute this in the

formula u(x, t) =
∫ k0+ε

k0−ε û0(k)ei(kx−ω(k)t) dk for the
solution. Assuming ε is small enough that the
higher order terms in this expansion can be ignored
in the interval [k0−ε, k0+ε], we get the approxima-
tion u(x, t) ≈ f(x − ω′(k0)t)ei(k0x−ω(k0)t), where

f(x) =
∫ k0+ε

k0−ε û0(k)ei(k−k0)x = u0(x)e−ik0x dk.

Thus, to this approximation, the solution u(x, t) is
just the plane wave solution of the wave equation
having wave number k0, but amplitude modulated
by a traveling wave with profile f and moving at
the group velocity ω′(k0).

Exercise 1.4.8. Consider the solution u(x, t) to
a linear wave equation that is the superposition of
two plane wave solutions, the first with wave num-
ber k0 and the second with wave number k0 + ∆k,
that is close to k0. Let ∆ω = ω(k0 + ∆k)− ω(k0).
Show that u(x, t) is (exactly!) the first plane wave
solution amplitude modulated by a travelling wave

of profile f(x) = 1 + ei∆kx and velocity ∆ω
∆k . (So

that in this case there is no real dispersion.)

Example 1.4.9. De Broglie Waves.

Schrödinger’s Equation for a particle in one di-
mension, ψt = i ~

2mψxx + 1
i~uψ, provides an excel-

lent model for comparing phase and group velocity.
Here h = 6.626 × 10−34 Joule seconds is Planck’s
quantum of action, ~ = h/2π, and u is the po-
tential function, i.e., −u′(x) gives the force acting
on the particle when its location is x. We will
only consider the case of a free particle, i.e., one
not acted on by any force, so we take u = 0, and
Schrödinger’s Equation reduces to ψt + P ( ∂

∂x )ψ =

0, where P (ξ) = ~
i
ξ2

2m . The dispersion relation

therefor gives vφ(k) = ω(k)
k = P (ik)

ik = ~k
2m as the

phase velocity of a plane wave solution of wave
number k, (a so-called de Broglie wave), and thus
the group velocity is vg(k) = ω′(k) = ~k

m . Now the
classical velocity of a particle of momentum p is p

m ,
and this implies the relation p = ~k between mo-
mentum and wave number. Since the wave-length
λ is related to the wave number by λ = 2π

k , this

gives the formula λ = h
p for the so-called de Broglie

wave-length of a particle of momentum p. (This
was the original de Broglie hypothesis, associat-
ing a wave-length to a particle.) Note that the

energy E of a particle of momentum p is p2

2m , so

E(k) = (~k)2

2m = ~ω(k), the classic quantum me-
chanics formula relating energy and frequency.

For this wave equation it is easy and interesting
to find explicitly the evolution of a Gaussian wave-
packet that is initially centered at x0 and has wave
number centerd at k0—in fact this is given as an
exercise in almost every first text on quantum me-
chanics. For the Fourier Transform of the initial
wave function ψ0, we take ψ̂0(k) = G(k − k0, σp),
where

G(k, σ) =
1

(2π)
1
4
√
σ

exp

(
− k2

4σ2

)
is the L2 normalized Gaussian centered at the
origin and having “width” σ. Then, as we saw
above, ψ(x, t), the wave function at time t, has

Fourier Transform ψ̂(k, t) given by ψ̂0(k)e−P (ik)t,

and ψ(x, t) =
∫
ψ̂(k, t)eikx dk. Using the fact

that the Fourier Transform of a Gaussian is an-
other Gaussian, we find easily that ψ(x, t) =
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A(x, t)eiφ(x,t), where the amplitude A is given by
A(x, t) = G(x − vgt, σx(t)). Here, as above, vg =
vg(k0) = ~k0

m is the group velocity, and the spatial

width σx(t) is given by σx(t) = ~
2σp

(1+
4σ4

p

~2
t2

m ). We

recall that the square of the amplitude A(x, t) is
just the probability density at time t of finding the
particle at x. Thus, we see that this is a Gaussian
whose mean (which is the expected position of the
particle) moves with the velocity of the classical
particle. Note that we have a completely explicit
formula for the width σx(t) of the wave packet as a
function of time, so the broadening effect of disper-
sion is apparent. Also note that the Heisenberg’s
Uncertainty Principle, σx(t)σp ≥ ~

2 is actually an
equality at time zero, and it is the broadening of
disperion that makes it a strict inequality at later
times.

Remark 1.4.10. For a non-free particle (i.e.,
when the potential u is not a constant function)
the Schrödinger Equation, ψt = i ~

2mψxx + 1
i~uψ,

no longer has coefficients that are constant in x,
so we don’t expect solutions that are exponential
in both x and t (i.e., plane waves or de Broglie
waves). But the equation is still linear, and it
is still invariant under time translations, so do
we expect to be able to expand the general so-
lution into a superposition of functions of the form
ψE(x, t) = φ(x)e−i

E
~ t. (We have adopted the

physics convention, replacing the frequency, ω, by
E
~ , where E is the energy associated to that fre-
quency.) If we substitute this into the Schrödinger
equation, then we see that the “energy eigen-
function” (or “stationary wave function”) φ must
satisfy the so-called time-independent Schrödinger

Equation, (− ~2

2m
d2

dx2 +u)φ = Eφ. Note that this is
just a second-order linear ODE, so for each choice
of E it will have a two-dimensional linear space
of solutions. This linear equation will show up
with a strange twist when we solve the nonlinear
KdV equation, ut − 6uux + uxxx = 0, by the re-
markable Inverse Scattering Method. Namely, we
will see that if the one-parameter family of poten-
tials u(t)(x) = u(x, t) evolves so as to satisfy the
KdV equation, then the corresponding family of

Schrödinger operators, (− ~2

2m
d2

dx2 + u), are unitar-
ily equivalent, a fact that will play a key rôle in the
Inverse Scattering Method. (Note that the “time”,
t, in the time-dependent Schrödinger Equation is

not related in any way to the t in the KdV equa-
tion.)

1.5 Conservation Laws

We now return to the consideration of a conserva-
tion law

(CL) ut + f(u)ux = 0.

We will usually assume that f ′(u) ≥ 0, so that f
is a non-decreasing function. This is satisfied in
most of the important applications.

Example 1.5.1. Take F (u) = cu, so f(u) = c and
we get once again the Linear Advection Equation
ut−cux = 0. The Method of Characteristics below
will give yet another proof that the solution to the
Cauchy Problem is u(x, t) = u0(x− ct).

Example 1.5.2. Take F (u) = 1
2u

2, so f(u) = u
and we get the important Inviscid Burgers Equa-
tion, ut + uux = 0.

We will next explain how to solve the Cauchy
Problem for such a Conservation Law using the
so-called Method of Characteristics. We look for
smooth curves (x(s), t(s)) in the (x, t)-plane along
which the solution to the Cauchy Problem is con-
stant. Suppose that (x(s0), t(s0)) = (x0, 0), so
that the constant value of u(x, t) along this so-
called characteristic curve is u0(x0). Then 0 =
d
dsu((x(s), t(s)) = uxx

′ + utt
′, and hence

dx

dt
=
x′(s)

t′(s)
= − ut

ux
= f(u(x(s), t(s)) = f(u0(x0)),

so the characteristic curve is a straight line of slope
f(u0(x0)), i.e., u has the constant value u0(x0)
along the line Γx0

: x = x0 + f(u0(x0))t. Note
the following geometric interpretation of this last
result: to find the wave profile at time t (i.e.,
the graph of the map x 7→ u(x, t)), translate
each point (x0, u0(x0)) of the initial profile to
the right by the amount f(u0(x0))t. (This is
what we promised to show earlier.) The analytic
statement of this geometric fact is that the solu-
tion u(x, t) to our Cauchy Problem must satisfy
the implicit equation u(x, t) = u0(x− tf(u(x, t))).
Of course the above is heuristic—how do we know
that a solution exists?—but it isn’t hard to work
backwards and make the argument rigorous. The
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idea is to first define “characteristic coordinates”
(ξ, τ) in a suitable strip 0 ≤ t < TB of the (x, t)-
plane. We define τ(x, t) = t and ξ(x, t) = x0

along the characteristic Γx0
, so t(ξ, τ) = τ and

x(ξ, τ) = ξ + f(u0(ξ))τ . But of course, for this to
make sense, we must show that there is a unique
Γx0 passing through each point (x, t) in the strip
t < TB.

The easiest case is f ′ = 0, say f = c, giving the
Linear Advection Equation, ut + cux = 0. In this
case, all characteristics have the same slope, 1/c,
so that no two characteristics intersect, and there
is clearly exactly one characteristic through each
point, and we can define TB =∞.

From now on we will assume that the equation is
“truly nonlinear”, in the sense that f ′(u) > d > 0,
so that f is a strictly increasing function. If u′0
is everywhere positive, then u0(x) is strictly in-
creasing, and hence so is f(u0(x)). In this case we
can again take TB =∞. For, since the slope of the
characteristic Γx0

issuing from (x0, 0) is 1
f(u0(x)) , it

follows that if x0 < x1 then Γx1 has smaller slope
than Γx0 , and hence these two characteristics can-
not intersect for t > 0, so again every point (x, t)
in the upper half-plane lies on at most one charac-
teristic Γx0

.
Finally the interesting general case: suppose u′0

is somewhere negative. In this case we define TB to
be the infimum of [−u′0(x)f ′(u0(x))]−1, where the
inf is taken over all x with u′0(x) < 0. For reasons
that will appear shortly, we call TB the breaking
time. As we shall see, TB is the largest T for which
the Cauchy Problem for (CL) has a solution with
u(x, 0) = u0(x) in the strip 0 ≤ t < T of the
(x, t)-plane. It is easy to construct examples for
which TB = 0; this will happen if and only if there
exists a sequence {xn} with u′0(xn) → −∞. In
the following we will assume that TB is positive,
and that in fact there is a point x0 where TB =

−1
u′0(x0)f ′(u0(x0)) . In this case, we will call Γx0 a

breaking characteristic.
Now choose any point x0 where u′0(x0) is nega-

tive. For x1 slightly greater than x0, the slope of
Γx1

will be greater than the slope of Γx0
, and it

follows that these two characteristics will meet at
the point (x, t) where x1 + f(u0(x1))t = x = x0 +
f(u0(x0))t, namely when t = − x1−x0

f(u0(x1))−f(u0(x0)) .

Exercise 1.5.3. Show that TB is the least t for
which any two characteristics intersect at some

point (x, t) with t ≥ 0.

Exercise 1.5.4. Show that there is always at least
one characteristic curve passing through any point
(x, t) in the strip 0 ≤ t < TB (and give a counterex-
ample if u′0 is not required to be continuous).

Thus the characteristic coordinates (ξ, τ) are
well-defined in the strip 0 ≤ t < TB of the (x, t)-
plane. Note that since x = ξ+f(u0(ξ))τ , ∂x∂ξ = 1+

f ′(u0(ξ))u′0(ξ)τ , and ∂x
∂τ = f(u0(ξ)), while ∂t

∂ξ = 0

and ∂t
∂τ = 1. It follows that the Jacobian of (x, t)

with respect to (ξ, τ) is ∂x
∂ξ = 1 + f ′(u0(ξ))u′0(ξ),

which is positive in 0 ≤ t < TB, so that (ξ, τ) are
smooth coordinates in this strip. On the other
hand, if Γx0

is a breaking characteristic, then then
the Jacobian aproaches zero along Γx0 as t ap-
proaches TB, confirming that the characteristic co-
ordinates cannot be extended to any larger strip.

By our heuristics above, we know that the solu-
tion of the Cauchy Problem for (CL) with initial
value u0 should be given in characteristic coordi-
nates by the explicit formula u(ξ, τ) = u0(ξ), and
so we define a smooth function u in 0 ≤ t < TB
by this formula. Since the map from (x, t) to
(ξ, τ) is a diffeomophism, this also defines u as a
smooth function of x and t, but it will be sim-
pler to do most calculations in characteristic co-
ordinates. In any case, since a point (x, t) on the
characteristic Γξ satisfies x = ξ + f(u0(ξ))t, we
see that u = u(x, t) is the solution of the implicit
equation u = u0(x − tf(u)). It is obvious that
u(x, 0) = u0(x), and we shall see next that u(x, t)
satisfies (CL).

Exercise 1.5.5. Use the chain-rule: ux = uξ
∂ξ
∂x

and ut = uξ
∂ξ
∂t to compute the partial derivatives

ux and ut as functions of ξ and τ :

ut(ξ, τ) = − u′0(ξ)f(u0(ξ))

1 + u′0(ξ)f ′(u0(ξ))τ

and

ux(ξ, τ) =
u′0(ξ)

1 + u′0(ξ)f ′(u0(ξ))τ

and deduce from this that u actually satisfies the
equation (CL) in 0 ≤ t < TB.

Exercise 1.5.6. Show that, along a breaking
characteristic Γx0 , the value of ux at the point

x = x0 + f(u0(x0))t is given by
u′0(x0)TB
TB−t

. (Note
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that this is just the slope of the wave profile at
time t over the point x.)

We can now get a qualitative but very precise
picture of how u develops a singularity as t ap-
proaches the breaking time TB, a process usually
referred to as shock formation or steepening and
breaking of the wave profile.

Namely, let Γx0
be a breaking characteristic and

consider an interval I around x0 where u0 is de-
creasing. Let’s follow the evolution of that part of
the wave profile that is originally over I. Recall
our algorithm for evolving the wave profile: each
point (x, u0(x)) of the initial profile moves to the
right with a constant velocity f(u0(x)), so at time
t it is at (x + f(u0(x))t, u0(x)). Thus, the higher
part of the wave profile, to the left, will move faster
than the lower part to the right, so the profile will
bunch up and become steeper, until it eventually
becomes vertical or “breaks” at time TB when the
slope of the profile actually becomes infinite over
the point x0 + f(u0(x0))TB. (In fact, the above
exercise shows that the slope goes to −∞ like a
constant times 1

t−TB
.) Note that the values of u

remain bounded as t approaches TB. In fact, it is
clearly possible to continue the wave profile past
t = TB, using the same algorithm. However, for
t > TB there will be values x∗ where the vertical
line x = x∗ meets the wave profile at time t in two
distinct points (corresponding to two characteris-
tics intersecting at the point (x∗, t)), so the profile
is no longer the graph of a single-valued function.

For certain purposes it is interesting to know
how higher derivatives uxx, uxxx, . . . behave as t
approaches TB along a breaking characteristic, (in
particular, in the next section we will want to com-
pare uxxx with uux). These higher partial deriva-
tives can be estimated in terms of powers of ux us-
ing ∂

∂x = ∂
∂ξ (∂x∂ξ )−1, and ∂x

∂ξ = 1 +f ′(u0(ξ))u′0(ξ)τ .

Exercise 1.5.7. Show that along a breaking char-
acteristic Γx0

, as t→ TB,

uxx = O(u3
x) = O((t− TB)−3),

and
uxxx = O(u5

x) = O((t− TB)−5).

1.6 Split-Stepping

We now return to the KdV equation, say in the
form ut = −uux − uxxx. If we drop the nonlinear
term, we have left the dispersive wave equation
ut = −uxxx, that we considered in the section on
linear wave equations. Recall that we can solve
its Cauchy Problem, either by using the Fourier
Transform or by convolution with an explicit fun-
damental solution that we wrote in terms of the
Airy function.

On the other hand, if we drop the linear term,
we are left with the inviscid Burgers Equation,
ut = −uux, which as we know exhibits steepen-
ing and breaking of the wave profile, causing a
shock singularity to develop in finite time TB for
any non-trivial initial condition u0 that vanishes at
infinity. Up to this breaking time, TB, we can again
solve the Cauchy Problem, either by the method of
characteristics, or by solving the implicit equation
u = u0(x− ut) for u as a function of x and t.

Now, in [?] it is proved that KdV defines a global
flow on the Sobolev space H4(R) of functions u :
R→ R having derivatives of order up to four in L2,
so it is clear that dispersion from the linear uxxx
term must be counteracting the peaking from the
nonlinear uux term, preventing the development of
a shock singularity.

In order to understand this balancing act better,
it would be useful to have a method for taking the
two flows defined by ut = −uxxx and ut = −uux
and combining them to define the flow for the full
KdV equation. (In addition, this would give us
a method for solving the KdV Cauchy Problem
numerically.)

In fact there is a very general technique that ap-
plies in such situations. In the pure mathematics
community it is usually referred to as the Trotter
Product Formula, while in the applied mathemat-
ics and numerical analysis communities it is called
split-stepping. Let me state it in the context of
ordinary differential equations. Suppose that Y
and Z are two smooth vector fields on Rn, and we
know how to solve each of the differential equa-
tions dx/dt = Y (x) and dx/dt = Z(x), meaning
that we know both of the flows φt and ψt on Rn
generated by X and Y respectively. The Trotter
Product Formula is a method for constructing the
flow θt generated by Y +Z out of φ and ψ; namely,
letting ∆t = t

n , θt = limn→∞(φ∆tψ∆t)
n. The in-

tuition behind the formula is simple. Think of ap-
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proximating the solution of dx/dt = Y (x) + Z(x)
by Euler’s Method. If we are currently at a point
p0, to propagate one more time step ∆t we go
to the point p0 + ∆t (Y (p0) + Z(p0)). Using the
split-step approach on the other hand, we first
take an Euler step in the Y (p0) direction, going to
p1 = p0 + ∆t Y (p0), then take a second Euler step,
but now from p1 and in the Z(p1) direction, going
to p2 = p1+∆t Z(p1). If Y and Z are constant vec-
tor fields, then this gives exactly the same final re-
sult as the simple full Euler step with Y +Z, while
for continuous Y and Z and small time step ∆t it is
a good enough approximation that the above limit
is valid. The situation is more delicate for flows on
infinite dimensional manifolds, nevertheless it was
shown by F. Tappert in [?] that the Cauchy Prob-
lem for KdV can be solved numerically by using
split-stepping to combine methods for ut = −uux
and ut = −uxxx.

Split-stepping suggests a way to understand the
mechanism by which dispersion from uxxx balances
shock formation from uux in KdV. Namely, if we
consider wave profile evolution under KdV as made
up of a succession of pairs of small steps (one for
ut = −uux and the one for ut = −uxxx), then
when u, ux, and uxxx are not too large, the steep-
ening mechanism will dominate. But recall that
as the time t approaches the breaking time TB, u
remains bounded, and along a breaking character-
istic ux only blows up like (TB − t)−1 while uxxx
blows up like (TB − t)−5. Thus, near breaking in
time and space, the uxxx term will dwarf the non-
linearity and will disperse the incipient shock. In
fact, computer simulations do show just such a sce-
nario playing out.

2 The Korteweg-de Vries Equation

We have just seen that the Korteweg-de Vries
equation,

(KdV) ut + 6uux + uxxx = 0,

expresses a balance between dispersion from its
third-derivative term and the shock-forming ten-
dency of its nonlinear term, and in fact many mod-
els of one-dimensional physical systems that ex-
hibit mild dispersion and weak nonlinearity lead
to KdV as the controlling equation at some level
of approximation.

As mentioned earlier, KdV first arose as the
equation modelling solitary gravity waves in a shal-
low canal. Such waves are rare and not easy to
produce, and were apparently first noticed only in
1834 (by the naval architect, John Scott Russell).
Early attempts by Stokes and Airy to model them
mathematically seemed to indicate that such waves
could not be stable—so their very existence was at
first a matter of debate. Later work by Boussinesq
and Rayleigh corrected errors in this earlier the-
ory, and finally a paper in 1894 by Korteweg and
de Vries [?] settled the matter by giving a convinc-
ing mathematical argument that wave motion in
a shallow canal is governed by KdV, and showing
by explicit computation that their equation admit-
ted travelling-wave solutions that had exactly the
properties described by Russell, including the rela-
tion of height to speed that Russell had determined
experimentally in a wave tank he had constructed.

It was only much later that the truly remark-
able properties of the KdV equation became evi-
dent. In 1954, Fermi, Pasta and Ulam (FPU) used
one of the very first digital computers to perform
numerical experiments on a one-dimensional, an-
harmonic lattice model, and their results contra-
dicted the then current expectations of how energy
should distribute itself among the normal modes
of such a system [?]. A decade later, Zabusky and
Kruskal re-examined the FPU results in a famous
paper [?]. They showed that, in a certain con-
tinuum limit, the FPU lattice was approximated
by the KdV equation. They then did their own
computer experiments, solving the Cauchy Prob-
lem for KdV with initial conditions corresponding
to those used in the FPU experiments. In the re-
sults of these simulations they observed the first
example of a “soliton”, a term that they coined to
describe a remarkable particle-like behavior (elas-
tic scattering) exhibited by certain KdV solutions.
Zabusky and Kruskal showed how the coherence of
solitons explained the anomalous results observed
by Fermi, Pasta, and Ulam. But in solving that
mystery, they had uncovered a larger one; KdV
solitons were unlike anything that had been seen
before, and the search for an explanation of their
remarkable behavior led to a series of discoveries
that changed the course of applied mathematics
for the next thirty years.

We next fill in some of the mathematical details
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behind the above sketch, beginning with a discus-
sion of explicit solutions to the KdV equation.

Finding the travelling wave solutions of KdV
is straightforward; if we substitute the Ansatz
u(x, t) = f(x − ct) into KdV we obtain the ODE
−cf ′ + 6ff ′ + f ′′′, and adding as boundary con-
dition that f should vanish at infinity, a routine
computation leads to the two-parameter family of
travelling-wave solutions:

u(x, t) = 2a2 sech2(a(x− 4a2t+ d)).

Exercise 2.0.1. Carry out the details of this com-
putation. Hint: Get a first integral by writing
6ff ′ = (3f2)′.

These are the solitary waves seen by Russell, and
they are now usually referred to as the 1-soliton
solutions of KdV. Note that their amplitude, 2a2,
is just half their speed, 4a2, while their “width” is
proportional to a−1; i.e., taller solitary waves are
thinner and move faster.

Next, following M . Toda [?], we will “derive” the
2-soliton solutions of KdV. We first rewrite the 1-
soliton solution as u(x, t) = 2 ∂2

∂x2 log cosh(a(x −
4a2t + δ), or u(x, t) = 2 ∂2

∂x2 logK(x, t) where

K(x, t) = (1 + e2a(x−4a2t+δ)). We now try to gen-
eralize, looking for solutions of the form

u(x, t) = 2
∂2

∂x2
logK(x, t),

with K of the form K(x, t) = 1+A1e
2η1 +A2e

2η2 +
A3e

2(η1+η2), where ηi = ai(x− 4a2
i t + di), and we

are to choose the Ai and di by substituting in KdV
and seeing what works.

Exercise 2.0.2. Show that KdV is satisfied for
u(x, t) of this form and for arbitrary choices of
A1, A2, a1, a2, d1, d2, provided only that we define

A3 =

(
a2 − a1

a1 + a2

)2

A1A2.

The solutions of KdV that arise this way are called
the 2-soliton solutions of KdV.

Later we will indicate how to get the n-soliton
family of solutions for KdV in a completely
straightforward way using the Inverse Scattering
Method. But, for now, we want to look more

closely at the 2-soliton solutions, and more specif-
ically their asymptotic behavior as t approaches
±∞. We could do this for an arbitrary 2-soliton,
but for simplicity let us take a1 = a2 = 3.

Exercise 2.0.3. Show that for these choices of a1

and a2,

u(x, t) = 12
3 + 4 cosh(2x− 8t) + cosh(4x− 64t)

[cosh(3x− 36t) + 3 cosh(x− 28t)]2
,

(so in particular u(x, 0) = 6 sech2(x)), and that for
t large and negative, u(x, t) is asymptotically equal
to 2 sech2(x−4t−φ)+8 sech2(x−16t+ φ

2 ), while for
t large and positive, u(x, t) is asymptotically equal
to 2 sech2(x− 4t+φ) + 8 sech2(x− 16t− φ

2 ), where
φ = log(3)/3. (This is hard. For the solution see
[?], Chapter 6.)

Note what this says. If we follow the evolution
from −T to T (where T is large and positive),
we first see the superposition of two 1-solitons; a
larger and thinner one to the left of and overtak-
ing a shorter, fatter, and slower-moving one to the
right. Around t = 0 they merge into a single lump
(with the shape 6 sech2(x)), and then they sepa-
rate again, with their original shapes restored, but
now the taller and thinner one is to the right. It
is almost as if they had passed right through each
other—the only effect of their interaction is the
pair of phase shifts—the slower one is retarded
slightly from where it would have been, and the
faster one is slightly ahead of where it would have
been. Except for these phase shifts, the final result
is what we might expect from a linear interaction.
It is only if we see the interaction as the two soli-
tons meet that we can detect its highly nonlinear
nature. (Note that at time t = 0, the maximum
amplitude, 6, of the combined wave is actually less
than the maximum amplitude, 8, of the taller wave
when they are separated.) But of course the really
striking fact is the resilience of the two individual
solitons—their ability to put themselves back to-
gether after the collision. Not only is no energy ra-
diated away, but their actual shapes are preserved.

(Remarkably, on page 384 of Russell’s 1844 pa-
per, there is a sketch of a 2-soliton interaction ex-
periment that Russell had carried out in his wave
tank!)

We shall see later that every initial profile u0

for the KdV equation can be thought of as made
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up of two parts: an n-soliton solution for some
n, and a dispersive “tail”. The tail is transient,
that is, it rapidly tends to zero in the sup norm
(although its L2 norm is preserved), while the n-
soliton part behaves in the robust way that is the
obvious generalization of the 2-soliton behavior we
have just analyzed.

Now back to the computer experiment of
Zabusky and Kruskal. For numerical reasons, they
chose to deal with the case of periodic boundary
conditions—in effect studying the KdV equation
ut + uux + δ2uxxx = 0 (which they label (1) ) on
the circle instead of on the line. For their pub-
lished report, they chose δ = 0.022 and used the
initial condition u(x, 0) = cos(πx). With the above
background, it is interesting to read the following
extract from their 1965 report, containing the first
use of the term “soliton”:

(I) Initially the first two terms of Eq. (1)
dominate and the classical overtaking phe-
nomenon occurs; that is u steepens in regions
where it has negative slope. (II) Second, af-
ter u has steepened sufficiently, the third term
becomes important and serves to prevent the
formation of a discontinuity. Instead, oscil-
lations of small wavelength (of order δ) de-
velop on the left of the front. The amplitudes
of the oscillations grow, and finally each os-
cillation achieves an almost steady amplitude
(that increases linearly from left to right) and
has the shape of an individual solitary-wave of
(1). (III) Finally, each “solitary wave pulse”
or soliton begins to move uniformly at a rate
(relative to the background value of u from
which the pulse rises) which is linearly pro-
portional to its amplitude. Thus, the soli-
tons spread apart. Because of the periodicity,
two or more solitons eventually overlap spa-
tially and interact nonlinearly. Shortly after
the interaction they reappear virtually unaf-
fected in size or shape. In other words, soli-
tons “pass through” one another without los-
ing their identity. Here we have a nonlinear
physical process in which interacting localized
pulses do not scatter irreversibly .

Bibliography

1. Ablowitz, M.J.,Clarkson, P.A.,Solitons, non-
linear evolution equations and inverse scattering,
Cambridge Univ. Press (1991)

2. Ablowitz, M.J., Kaup, D.j., Newell, A.C. and Se-
gur, H., Method for solving the Sine-Gordon equa-
tion, Phy. Rev. Lett. 30 (1973),1262–1264

3. Ablowitz, M.J., Kaup, D.j., Newell, A.C. and
Segur, H., The inverse scattering transform—
Fourier analysis for nonlinear problems, Stud.
Appl. Math. 53 (1974), 249–315

4. Abraham, R., Marsden, J.E., Foundations of Me-
chanics, Benjamin/Cummings (1978)

5. Adams,R.A., Sobolev Spaces, Academic Press
(1975)

6. Adler, M., On a trace functional for formal
pseudo-differential operators and the symplectic
structure of the Korteweg-de Vries equation, In-
vent. Math. 50 (1979), 219–248

7. Arnold, V.I., Mathematical Methods of Classical
Mechanics, Springer-Verlag (1978)

8. Bona, J.L. and Smith, R., The Initial-Value Prob-
lem for the Korteveg-de Vries Equation, Philos.
Trans. Royal Soc. London, Series A 278 (1975),
555–604

9. Drazin, P.G., Johnson, R.S., Solitons: an intro-
duction, Cambridge Univ. Press (1989)

10. Forneberg,B. and Whitham, G.B., A Numerical
and Theoretical Study of Certain Nonlinear Wave
Phenomena, Proc. R. Soc. Lond. A 289 (1978),
373–403

11. Faddeev, L.D., Takhtajan, L.A., Hamiltonian
methods in the theory of solitons, (1987),
Springer-Verlag

12. Fermi, E., Pasta, J., Ulam, S., Studies of Nonlin-
ear Problems. I, Lectures in Applied Math. 15
(1974), 143–155

13. Gardner, C.S., Greene, J.M., Kruskal, M.D.,
Miura, R.M., Method for solving the Korteweg-
de Vries equation, Physics Rev. Lett. 19 (1967),
1095-1097

14. Gel’fand, I.M., Levitan, B. M., On the determi-
nation of a differential equation from its spectral
function, Izv. Akad. Nauk SSSR Ser. Mat. 15
(1951), 309–366

15. Hamming, R.W., The Unreasonable Effectiveness
of Mathematics, Amer. Math. Monthly 87 (1980)

16. John, F., Nonlinear Wave Equations, Forma-
tion of Singularities, American Math. Soc., ULS
(1990)

17. Kato, T., On the Cauchy Problem for the (Gen-
eralized) Korteweg-de Vries Equation, Studies in
Applied Math., Adv. in Math. Supp. Stud. 8
(1983), 93–128

18. Kato, T., Quasi-linear equations of evolution,
with applications to partial differential equations,



14

Lecture Notes in Math., vol. 448, Springer-
Verlag, Berlin and New York (1988), 27–50

19. Kay, B., Moses, H.E., The determination of
the scattering potential from the spectral measure
function, III, Nuovo Cim. 3 (1956), 276–304

20. Kostant, B., The solution to a generalized Toda
lattice and representation theory, Adv. Math. 34
(1979), 195-338

21. Korteweg, D.J., de Vries, G., ON the change of
form of long waves advancing in a rectangular
canal, and on a new type of long stationary waves,
Philos. Mag. Ser. 5 39 (1895), 422–443

22. Lax, P.D., Integrals of nonlinear equations of evo-
lution and solitary waves, Comm. Pure. Appl.
Math. 21 (1968), 467–490

23. Lax, P.D., Hyperbolic Systems of Conservation
Laws and the Mathematical Theory of Shock
Waves, SIAM, CBMS 11 (1973)

24. Lax, P.D., Outline of a theory of the KdV equa-
tion in Recent Mathematical Methods in Nonlin-
ear Wave Propagation, Lecture Notes in Math.,
vol. 1640, Springer-Verlag, Berlin and New York
1996, 70–102

25. Marchenko, V.A., On the reconstruction of the po-
tential energy from phases of the scattered waves,
Dokl. Akad. Nauk SSSR 104 (1955), 695–698

26. Wineberg, S.B., Gabl,E.F., Scott, L.R. and
Southwell, C.E.Implicit Spectral Methods for
Wave Propogation Problems, J. Comp. Physics
97 (1991), 311–336

27. Palais,R.S., Foundations of Global Non-linear
Analysis, Benjamin and Co. 1968

28. Palais, R.S., The symmetries of solitons, Bulletin
AMS, 34 (1997), 339-403

29. Russell, J.S., Report on Waves//14th Mtg. of the
British Assoc. for the Advance. of Science, John
Murray, London, pp. 311–390 + 57 plates (1844)

30. Sattinger, D.H., Weak and Strong Nonlinear
Waves, preprint

31. Strang, G., On the Construction and Comparison
of Difference Schemes, SIAM J. Numerical Anal-
ysis 5 (1968),

32. Symes, W.W., Systems of Toda type, Inverse spec-
tral problems, and representation theory, Inven-
tiones Math. 59 (1980), 13-51

33. Tappert, F., Numerical Solutions of the Korteweg-
de Vries Equations and its Generalizations by
the Split-Step Fourier Method, in Nonlinear Wave
Motion, Lecture Notes in Applied Math. (AMS)
v. 15 (1974), 215–216

34. Toda, M., Nonlinear Waves and Solitons, Kluwer
1989

35. Wigner, E., The Unreasonable Effectiveness of
Mathematics in the Natural Sciences, Comm. in
Pure and Appl. Math. 13 (1960)

36. Zakharov, V.E., Faddeev, L.D., Korteweg-de
Vries equation, a completely integrable Hamilto-
nian system, Func. Anal. Appl. 5 (1971), 280-
287

37. Zakharov, V.E., Shabat, A.B., Exact the-
ory of two-dimensional self-focusing and one-
dimensional of waves in nonlinear media, Sov.
Phys. JETP 34 (1972), 62-69

38. Zabusky, N.J., Kruskal, M.D., Interaction of soli-
tons in a collisionless plasma and the recurrence
of initial states, Physics Rev. Lett. 15 (1965),
240–243


