
About Pseudospherical Surfaces*

If X : M ⊂ R3 is a surface with Gaussian curvature
K = −1, then it is known that there exists a local asymp-
totic coordinate system (x, t) on M such that the first and
second fundamental forms are

I = dx2 + dt2 + 2 cos q dx dt, II = 2 sin q dx dt,

where q is the angle between asymptotic lines (the x-curves
and t-curves). Such coordinates are called Tchebyshef co-
ordinates. The Gauss-Codazzi equations for M in these co-
ordinates become a single equation, the sine-Gordon equa-
tion (SGE)

qxt = sin q. (SGE)

Surfaces in R3 having constant Gauusian curvature K
equal minus one are usually called pseudospherical surfaces
(after the most well-known example, the pseudosphere)
and the so-called Fundamental Theorem of Surfaces gives
us a local correspondence between pseudospherical surfaces
(up to rigid motion) and solutions of SGE. A general pseu-
dospherical surface shares with the pseudosphere the fact
that its intrinsic geometry is a portion of the hyperbolic
geometry of Lobachevsky.

Now classical results of Bäcklund and of Bianchi concern-
ing pseudospherical surfaces provide methods to find many

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/

1



explicit solutions of the SGE and construct the correspond-
ing pseudospherical surfaces. In fact, the SGE is one of the
model soliton equations, and these classical methods give
rise to all of the soliton solutions of SGE. We will describe
next a little of this very classical differential geometry.

For surfaces M,M∗ in R3, a diffeomorphism ` : M →M∗

is called a pseudospherical congruence with constant θ if:

(i) the line joining p and p∗ = `(p) is tangent to both M
and M∗,

(ii) the angle between the normal of M at p and the nor-
mal of M∗ at p∗ = `(p) is θ, and

(iii) the distance from p to p∗ is sin θ for all p ∈M .

The following result of Bäcklund is fundamental to the
study of pseudospherical surfaces.

Bäcklund Theorem. Let M,M∗ be two surfaces in R3,
and ` : M → M∗ a pseudospherical congruence with con-
stant θ. Then

(a) both M and M∗ are pseudospherical surfaces,

(b) the Tchebyshef coordinates x, t on M maps to the
Tchebyshef coordinates on M∗ under `,

(c) if q and q∗ are the solutions of SGE corresponding to
M and M∗ respectively, then q, q∗ satisfies{

q∗x = qx + 4s sin( q
∗+q
2 ),

q∗t = −qt + 2
s sin( q

∗−q
2 ),

(BTθ)

where s = tan θ
2 .
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Moreover, given q, system (BTθ) is solvable for q∗ if and
only if q is a solution of the SGE, and the solution q∗ is
again a solution of the SGE.

We will call both ` and the transform from q to q∗

a Bäcklund transformation. This description of Bäcklund
transformations gives us an algorithm for generating fam-
ilies of solutions of the PDE by solving a pair of ordinary
differential equations. The procedure can be repeated,
but the miracle is that after the first step, the proce-
dure can be carried out algebraically. This is the Bianchi
Permutability Theorem. Given two pseudospherical con-
gruences `i : M0 → Mi with angles θi respectively and
sin θ21 6= sin θ22, then there exist an algebraic construction
of a unique surface M3, and pseudospherical congruences
˜̀
1 : M2 → M3 and ˜̀

2 : M1 → M3 with angles θ1 and
θ2 respectively such that ˜̀

2`1 = ˜̀
1`2. The analytic refor-

mulation of this theorem is the following: Suppose q is a
solution of the SGE and q1, q2 are two solutions of system
(BTθ) with angles θ = θ1, θ2 respectively. The Bianchi
permutability theorem gives a third local solution q3 to
the SGE

tan
q3 − q

4
=
s1 + s2
s1 − s2

tan
q1 − q2

4
,

where s1 = tan θi
2 and s2 = tan θ2

2 .

To see how the scheme works, we start with the trivial
solution q = 0 of SGE, then (BTθ) can be solved explicitly
to get

q∗(x, t) = 4 tan−1(esx+
t
s ), (1)
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the 1-soliton solutions of SGE. (Here s = tan θ
2 . ) An

application of the Permutability theorem then give the 2-
soliton solutions

q(x, t) = 4 tan−1

(
s1 + s2
s1 − s2

es1x+
1
s1
t − es2x+

1
s2
t

1 + e(s1+s2)x+( 1
s1

+ 1
s2

)t

)
. (2)

Repeated applications of the Permutability theorem give
complicated but nevertheless explicit n-soliton solutions.
Note that the parameters s1, s2 in the above formula for
2-solitons are real. But for s1 = eiθ and s2 = −e−iθ, even
though q1, q2 are not real-valued, nevertheless

q3(x, t) = 4 tan−1

(
sin θ sin(T cos θ)

cos θ cosh(X sin θ)

)
(3)

is real and a solution of SGE, where X = x − t, and T =
x+ t are space-time coordinates. This solution is periodic
in T and is called a Breather .

The “surface” corresponding to q = 0 is degenerate and in
fact is a straight line. The surfaces corresponding to

(i) 1-soliton ( formula (1)) with s = 1 is the Pseudo-
sphere,

(ii) 1-soliton (formula (1)) with s 6= 1 is a Dini Surface,

(iii) 2-soliton (formula (2)) contains the Kuen Surface.

(iv) Breather solution (formula (3)) with cos θ a rational
number is a pseudospherical surface periodic in the T
direction.
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Even though the breather solution q is periodic in T , the
corresponding pseudospherical surface may not be peri-
odic in T . This is because when we use the Fundamental
Theorem of Surfaces to construct the surface from solu-
tion q of the SGE, we need to solve two compatible ODEs
whose coefficients are given by functions of q and qx. For
Breathers, the solutions of these ODEs are periodic in T
if cos θ is rational.

You will notice that all of the pseudospherical surfaces
shown in the program have obvious singularities. In fact, a
theorem of Hilbert says that the hyperbolic plane can not
be isometrically immersed in R3, and this implies that all
complete pseudospherical surfaces must have singularities.
Although soliton solutions are smooth on the entire (x, t)-
plane, the corresponding pseudospherical surfaces have sin-
gularities where the induced metric becomes degenerate,
i.e., where

det

(
1 cos q

cos q 1

)
= 0.

In other words, a surface corresponding to a global solution
q of SGE will have a singularities along the curves where
q is a multiple of π. Moreover, since the metric has rank 1
there, these surfaces have cusp singularities.

For an elementary and short introduction to soliton theory
and its relation to SGE, see the article by C. L. Terng
and K. Uhlenbeck: Geometry of Solitons, Notices of AMS,
47(2000), 17-25. One may also download the pdf file of
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this paper from

http://www.math.neu.edu/∼terng/MyPapers.html

CLT
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