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The Surfaces Are Organized
According To their Construction

Surfaces may appear under several headings:
The Catenoid is an explicitly parametrized, minimal sur-
face of revolution.
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Planar Curves
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(Click the Names)
Circle
Ellipse
Parabola
Hyperbola
Conic Sections
Kepler Orbits, explaining 1/r-Potential
Nephroid of Freeth
Sine Curve
Lissajous Plane Curve
Catenary
Convex Curves from Support Function
Tractrix
Cissoid and Strophoid
Conchoid
Lemniscate
Clothoid
Archimedean Spiral
Logarithmic Spiral
Cycloid
Epi- and Hypocycloids
Cardioid and Limacon
Astroid
Deltoid
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Nephroid
Ancient Method of Construction:

Mechanically Generated Curves
Seven Cubic Curves, five with Addition:

Cubic Polynomial, Cuspidal Cubic,
Connected Rational Cubic, Rational Cubic with Poles,
Elliptic Cubic; Folium, Nodal Cubic
Elliptic Functions, parametrizing Elliptic Curves

Geometric Addition on Cubic Curves
Folium
Implicit Planar Curves, highly singular examples:

Tacnodal Quartic, Teissier Sextic
Cassinian Ovals, an implicit family
Userdefined Curves, explicitly parametrized:

User Cartesian, User Polar, User Graph
implicit: User Implicit Curves
User Curves by Curvature

Graphs of Planar Curves
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The Circle *

x = aa cos(t), y = aa sin(t), 0 ≤ t ≤ 2π

3DXM - suggestion: Select from the Action Menu Show
Generalized Cycloid and vary in the Settings Menu, entry:
Set Parameters, the (integer) ratio between the radius aa
and the rolling radius hh.
The length of the drawing stick is ii∗rolling radius.

The circle is the simplest and best known closed curve in
the plane. The default image shows the circle together
with the theorem of Thales about right angled triangles.
Other properties of the circle are also known since over
2000 years. In fact, many of the plane curves that have
individual names were already considered (and named) by
the ancient Greeks, and a large class of these can be ob-
tained by rolling one circle on the inside or the outside of
some other circle. The Greeks were interested in rolling
constructions because it was their main tool for describ-
ing the motions of the planets (Ptolemy). The following
curves from the Plane Curve menu can be obtained by
rolling constructions:

Cycloid, Ellipse, Astroid, Deltoid, Cardioid, Limaçon,
Nephroid, Epi- and Hypocycloids.

Not all geometric properties of these curves follow easily
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from their definition as rolling curve, but in some cases the
connection with complex functions (Conformal Category)
does.

Cycloids arise by rolling a circle on a straight line. The
parametric equations code for such a cycloid is

P.x := aa · t− bb sin(t)
P.y := aa− bb sin(t), aa = bb.

Cycloids have other cycloids of the same size as evolute
(Action Menu: “Show Osculating Circles with Normals”).
This fact is responsible for Huyghen’s cycloid pendulum to
have a period independent of the amplitude of the oscilla-
tion.

Ellipses are obtained if inside a circle of radius aa another
circle of radius r = hh = 0.5aa rolls and then traces a curve
with a radial stick of length R = ii · r. The parametric
equations for such an ellipse is

P.x := (R+ r) cos(t)
P.y := (R− r) sin(t).

In the visualization of the complex map z → z + 1/z in
Polar Coordinates the image of the circle of Radius R is
such an ellipse with r = 1/R.

Astroids are obtained if inside a circle of radius aa an-
other circle of radius r = hh = 0.25aa rolls and then traces
a curve with a radial stick of length R = ii · r = r. Para-
metric equations for such Astroids are



P.x := (aa− r) cos(t) +R cos(4t)
P.y := (aa− r) sin(t)−R sin(4t).

Astroids can also be obtained by rolling the larger circle of
radius r = hh = 0.75aa (put gg = 0 in this case). Another
geometric construction of the Astroids uses the fact that
the length of the segment of each tangent between the x-
axis and the y-axis has constant length. — Try hh :=
aa/3 to obtain a Deltoid.

Cardioids and Limaçons are obtained if outside a circle
of radius aa another circle of radius r = hh = −aa rolls
and then traces a curve with a radial stick of length R =
ii · r, ii = 1 for the Cardioids, ii > 1 for the Limaçons.
Parametric equations for Cardioids and Limaçons are

P.x := (aa+ r) cos(t) +R cos(2t)
P.y := (aa+ r) sin(t) +R sin(2t).

The Cardioids and Limaçons can also be obtained by rolling
the larger circle of radius r = hh = +2aa; now ii < 1 for
the Limaçons. Note that the fixed circle is inside the larger
rolling circle.
The evolute of the Cardioid (Action Menu: Show Osculat-
ing Circles with Normals) is a smaller Cardioid. The image
of the unit circle unter the complex map z → w = (z2+2z)
is a Cardioid; images of larger circles are Limaçons. In-
verses z → 1/w(z) of Limaçons are figure-eight shaped,
one of them is a Lemniscate.

Nephroids are generated by rolling a circle of one ra-



dius outside of a second circle of twice the radius, as the
program demonstrates. With R = 3r we thus have the
parametrization

P.x := R cos(t) + r cos(3t)
P.y := R sin(t) + r sin(3t).

As with Cardioids and Limaçons one can also make the
radius for the drawing stick shorter or longer: After select-
ing Circle set the parameters aa = 1, hh = −0.5, ii = 1 for
the Nephroid and ii > 1 for its looping relatives. – Pick in
the Action Menu: Show Osculating Circles with Normals.
The Normals envelope a smaller Nephroid.

The complex map z → z3 +3z maps the unit circle to such
a Nephroid. To see this, in the Conformal Map Category,
select z → zee + ee · z from the Conformal Map Menu,
then choose Set Parameters from the Settings Menu and
put ee = 3.

Archimedes’ Angle Trisection. A demo of this con-
struction can be selected from the Action Menu.

Circle Involute Gear. Another demo from the Action
Menu. Involute Gear is used for heavy machinery be-
cause of the following two advantages: If one wheel rotates
with constant angular velocity then so does the other, thus
avoiding vibrations. If the teeth become thiner by usage,
the axes can be moved closer to each other.

H.K. Go To Planar TOC



The Ellipse *

x(t) = aa cos(t), y(t) = bb sin(t), 0 ≤ t ≤ 2π

3DXM-suggestion:

Select in the Action Menu: Show Osculating Circles with
Normals. In the Animate Menu try the default Morph.
For related curves see: Parabola, Hyperbola, Conic Sec-
tions and their ATOs.

The Ellipse is shown together with the so called Leitkreis
construction of the curve and its tangent, see below. This
construction assumes that the constants aa and bb are pos-
itive. The larger of the two is called the semi-major axis
length, the smaller one is the semi-minor axis length.
The Ellipse is also the set of points satisfying the following
implicit equation: (x/aa)2 + (y/bb)2 = 1.

A geometric definition of the Ellipse, that can be used to
shape flower beds is:

An Ellipse is the set of points for which the sum
of the distances from two focal points is a con-
stant L equal to twice the semi-major axis length.

A gardener connects the two focal points by a cord of
length L, pulls the cord tight with a stick which then draws
the boundary of the flower bed with the stick. Another
version of this definition is:

* This file is from the 3D-XplorMath project. Please see:
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An Ellipse is the set of points which have equal
distance from a circle of radius L and a (focal)
point inside the circle.

Both these definitions are illustrated in the program.

The normal to an ellipse at any point bisects the angle
made by the two lines joining that point to the foci. This
says that rays coming out of one focal point are reflected
off the ellipse towards the other focal point. Therefore one
can build elliptically shaped “whispering galleries”, where
a word spoken softly at one focal point can be heard only
close to the other focal point.

To add a simple proof we show that the tangent leaves the
ellipse on one side; more precisely, we show that for every
other point on the tangent the sum of the distances to the
two focal points F1, F2 is more than the length L of the
major axis. (In the display: F = F2.) Pick any point Q
on the tangent, join it to the two focal points and reflect
the segment QF in the tangent, giving another segment
QS. Now F1QS is a radial straight segment only if Q is
the point of tangency—otherwise F1QS is by the triangle
inequality longer than the radius F1S (of length L) of the
circle around F1.

The evolute of an ellipse, i.e., the curve enveloped by the
normals of the ellipse—see Action Menu: Draw osculating
circles with normals, is a generalized Astroid, it is less
symmetric than the true Astroid.

An Ellipse can also be obtained by a rolling construction:



Inside a circle of radius aa another circle of radius r :=
hh = 0.5aa rolls and traces the Ellipse with a stick of
radius R := ii · r, see Plane Curves Menu: Circle and
select from the Action Menu: Show Generalized Cycloids.
The parametric equation resulting from this construction
is:

x(t) = (R+ r) cos(t)
y(t) = (R− r) sin(t)

This is related to the visualization of the complex map
z → z + 1/z in Polar Coordinates, the image of the circle
of radius R is such an ellipse with r = 1/R.

Such rolling constructions are reached with the Plane Curves
Menu entry: Circle and then the Action Menu Draw Gen-
eralized Cycloids or with Epi- and Hypocycloids. Recall
that negative values of the rolling radius hh gives curves
on the outside, positive radii (hh < aa) on the inside of
the fixed circle.
Other rolling curves are:

Cycloid, Astroid, Deltoid, Cardioid, Limacon,
Nephroid, Epi- and Hypocycloids.

H.K. Go To Planar TOC



Parabola *

See also: Ellipse, Hyperbola, Conic Section and their ATOs,
and in the Category Surfaces see: Conic Sections and Dan-
delin Spheres

The usual parametric equations for the Parabola are
x(t) := t2/4p
y(t) := t,
where p = aa/4,
so the Parabola visualizes the graphs of the two functions
y(x) :=

√
4p · x and x(y) := y2/4p.

The vertical line x = −p is called the directrix and the
point (x, y) = (p, 0) is called focal point of the Parabola.
The distance from a point (x, y =

√
4p · x) on the Parabola

to the directrix is (x + p), and this is the same distance
as from (x, y =

√
4p · x) to the focal point (p, 0), because

(x− p)2 + y2 = (x+ p)2.
The point (p, 0) is called ”focal point”, because light rays
which come in parallel to the x-axis are reflected off the
Parabola so that they continue to the focal point. This
fact is illustrated in the program. It gives the following
ruler construction of the Parabola:
Prepare the construction by drawing x-axis, y-axis, direc-
trix and focal point F. Then draw any line parallel to the
x-axis and intersect it with the directrix in a point S. The
line orthogonal to the connection SF and through its mid-
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http://3D-XplorMath.org/ Go To Planar TOC

http://3D-XplorMath.org/


point is the tangent of the Parabola and intersects there-
fore the incoming ray in the point of the Parabola which
we wanted to find.

The same construction works for Ellipse and Hyperbola, if
the directrix is replaced by a circle of radius 2*a around
one focal point. The curve is the set of points which have
the same distance from this circle and the other focal point.

The Action Menu of the Parabola has an entry “Show
Normals Through Mouse Point”. This illustrates an un-
expected property of the Parabola. One may already be
surprised that at the intersection points of normals always
three normals meet. We know no other curve which is ac-
companied by such a net of normals. The surprise should
increase if one looks at the y-coordinates of the parabola
points from where three such intersecting normals origi-
nate: these y-coordinates add up to 0! In other words, the
intersection behaviour of the normals reflects the addition
on the y-axis.

The explanation of where this intersection property comes
from is quite interesting. The normals of the Parabola are
the tangents to its evolute, the semi-cubical parabola, a
singular cubic curve (see Cuspidal Cubic). So the intersec-
tion property of the parabola normals can be thought of
as defining an addition law for the evolute, and as such it
is a simpler limiting case of the addition law that exists on
any cubic curve.
R.S.P. Go To Planar TOC



Hyperbola *

See also Parabola, Ellipse, Conic Sections and their ATOs.

The most common parametric equations for a Hyperbola
with semi-axes aa and bb are:

x(t) = ±aa cosh(t), y(t) = bb sinh(t), t ∈ R;

and another version is:

x(t) = aa/ cos(t), y(t) = bb sin(t)/ cos(t), t ∈ [0, 2π].

The corresponding implicit equation is:

(x/aa)2 − (y/bb)2 = 1.

The function graphs: {(x, y); y = 1/x + m · x} are also
Hyperbolae.

A geometric definition of the Hyperbola is:

A Hyperbola is the set of points for which the dif-
ference of the distance from two focal points
is constant.

Or:

A Hyperbola is the set of points which have the
same distance from a circle and a (focal) point
outside that circle.

* This file is from the 3D-XplorMath project. Please see:
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If one applies an inversion (x, y) → (x, y)/(x2 + y2) to a
right Hyperbola (i.e. aa = bb) then one obtains a Lemnis-
cate.

In the visualization of the complex map z → z + 1/z in
Polar Coordinates, the image of the radial lines are the
Hyperbolae:

x(R) = (R+ 1/R) cosφ
y(R) = (R− 1/R) sinφ, R ∈ R.

And the image of the standard Cartesian Grid under the
complex map z →

√
z is a grid of two families of orthogonal

Hyperbolae.

H.K. Go To Planar TOC



Conic Sections*

See also Parabola, Ellipse, Hyperbola and their ATOs.

A cone of revolution (e.g., {(x, y, z);x2+y2 = m·z2}) is one
of the simplest surfaces. Its intersections with planes are
called conic sections. Apart from pairs of lines these conic
sections are Parabolae, Ellipses or Hyperbolae. These curves
have also other geometric definitions (e.g., The locus of
points having the same distance from a focal point and a
circle). See their Menu entries.

On the other hand, they are also more robust than these
definitions show: Photographic images of conic sections
are again conic sections; or in a completely different for-
mulation: The intersection of a plane and any “quadratic
cone”, i.e.,
{(x, y, z) | a · x2 + b · y2 + c · z2 + d · xy + e · yz = 0},
is not more complicated than planar sections of circular
cones but are the same old Parabolae, Ellipses or Hyper-
bolae as above. A special case of this robustness is the fact
that orthogonal projections of conic sections in 3-space are
again conic sections. This is illustrated in the program as
follows:

Interpret the illustration as if it showed level lines on a hik-
ing map. The equidist parallel lines are the level lines of a

* This file is from the 3D-XplorMath project. Please see:
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sloping plane; the smaller the distance between these level
lines the steeper the plane. The equidistant concentric cir-
cles are the level lines of a circular cone, as for example an
ant lion would dig in sandy ground; without height num-
bers written next to the level lines we can of course not
decide whether the circular level lines represent a conical
mountain or a conical hole in the ground. We suggest that
the blue level line and the vertex of the cone are at height
zero and the other levels are higher up so that the cone is
a hole.

The intersection curve between plane and cone has then an
easy pointwise construction: Simply intersect level lines of
the same height on the two surfaces. (These are lines with
the same color in the program illustration.) This construc-
tion reveals a new geometric property of the intersection
curve on the map, of this conic section:

Take the ratio of the distances from a point on the
curve, (i) to the level line at height 0 of the plane
(called directrix) and (ii) to the vertex at height
zero of the cone (called focus). This ratio is the
same as the ratio of adjacent level lines of plane
and cone and therefore the same for all points of
this conic section.

H.K. Go To Planar TOC



Conic Sections, Kepler orbits *

See also Parabola, Ellipse, Hyperbola and their ATOs.

For many properties of the conic sections a parametriza-
tion is not relevant. However, when Kepler discovered that
planets and comets travel on conic sections around the sun
then this discovery came with a companion: the speed on
the orbit is such that angular momentum is preserved. In
more elementary terms: the radial connection from the sun
to the planet sweeps out equal areas in equal times. With
the 3dfs demo we explain geometrically how this celestial
parametrization is connected with the focal properties of
conic sections. Here we give the algebraic explanation first.

An ellipse, parametrized as affine image of a circle and
translated to the left is

P (ϕ) := (a cosϕ− e, b sinϕ).

If we choose e :=
√
a2 − b2 then we have |P (ϕ)| = (a −

e cosϕ). This gives the connection with the oldest defini-
tion of an ellipse: The sum of the distances from P (ϕ) to
the two points (±e, 0) is 2a.

Next we compute the quantity A, equal to twice the area
swept out by the position vector P , and also the derivatives

* This file is from the 3D-XplorMath project. Please see:
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of P and A:

A(ϕ) =

∫ ϕ

0

det(P (ϕ), P ′(ϕ))dϕ,

P ′(ϕ) = (−a sinϕ, b cosϕ),

A′(ϕ) = b(a− e cosϕ),

and we denote the function inverse to A(ϕ) by Φ(A), so
that,

Φ(A(ϕ)) = ϕ, Φ′(A) =
1

b(a− e cos Φ)
.

Let us write Q to denote the position when expressed as a
function of A, i.e., Q(A) := P (Φ(A)). Now Kepler’s Sec-
ond Law says that A proportional to time, or equivalently
that A is the time in approriate units, so the velocity is
Q′(A) = P ′(Φ(A)) · Φ′(A), and the kinetic energy is:

K.E. =
1

2
Q′(A)2 =

a2 sin2 ϕ+ b2 sin2 ϕ

2b2(a− e cosϕ)2

=
a2 − e2 cos2 ϕ

2b2(a− e cosϕ)2

=
(a+ e cosϕ)

2b2(a− e cosϕ)

=
a

b2
· 1

a− e cosϕ
− 1

2b2
.

=
a

b2
· 1

|P (ϕ)|
− 1

2b2
.



Thus, in units where we take twice the swept out area as
the time, the potential energy can be read off by using the
law of energy consevation, i.e., the fact that the kinetic
energy plus the potential energy is constant. In fact, it
follows from this that the potential energy at orbit point
Q(A(ϕ)) = P (ϕ) is equal to:

− a

b2
· 1

|P (ϕ)|
,

which is the famous 1/r law for the potential energy.

Next, we present a geometric proof. The starting point is
the determination of the correct orbital speed by the prop-
erty that the product of the speed |v| with the distance p
of the tangent line from the center is the constant angu-
lar momentum, Kepler’s second law. Of course we can
illustrate such a fact only if we also represent the size of
velocities by the length of segments and we have to keep in
mind that segments which illustrate a length and segments
which illustrate a velocity are interpretated with different
units.
Recall the following theorem about circles: if two secants
of a circle intersect then the product of the subsegments of
one secant ist the same as the product of the subsegments
of the other secant.
This will be applied to the circle the radius of which is the
length 2a of the major axis. (The midpoint is the other
focus, not the sun.) The two secants intersect in the fo-
cus representing the sun: one secant is an extension of the



major axis the other is perpendicular to the tangent line.
The subsegments of the first secant have the lengths 2a−2e
and 2a+2e, where 2e is the distance between the foci. The
subsegments of the second secant have one length 2p and
one labeled |v|.

2a
| v |

p

r

r

Kepler Ellipse with construction
of proper speed and potential.

The circle theorem says: (2a − 2e) · (2a + 2e) = 2p · |v|.
Since the left side is constant we can interprete the segment
labeled |v| as representing the correct orbital speed.

Now that we know at each point of the orbit the correct
speed we can deduce Newton’s 1/r-law for the gravita-
tional potential, if we use kinetic energy plus potential en-
ergy equals constant total energ. In the illustration we



have two similar right triangles, the small one has hy-
pothenuse = r and one other side = p, the big one has
as hypothenuse a circle diameter of length 4a and the cor-
responding other side has length 2p+ |v|. Now we use the
above const := (2a− 2e) · (2a+ 2e) = 2p · |v| to eliminate
p from the proportion:

p : r = (2p+ |v|) : 4a

This gives

2a/r = 1 + |v|/2p = 1 + v2/const.

Up to physical constants (units), v2 is the kinetic energy,
so that (again up to units) −1/r is the potential energy –
since such a potential makes kinetic plus potential energy
constant.

Another simple property of Kepler ellipses and hyperbo-
las is: Their velocity diagram, the so called hodograph, is
a circle. Usually one simply translates the velocity vec-
tor from the orbit point to the sun. In our picture we
see the velocity vector rotated by 90 degrees; indeed, it
ends on the circle. This leads to a geometric representa-
tion of the Runge-Lenz vector: In our picture we really see
the cross product of the (tangential) velocity vector with
angular momentum (a constant vector orthogonal to the
orbit plane). If we add to it a vector of constant length
2a and parallel to the position vector then we reach the
midpoint of our circle, the other focal point of the orbit



ellipse. This sum vector is, up to the constant negative
factor −(a− e)/2e the classical Runge-Lenz vector.

Mathematically, the parabolic and hyperbolic Kepler orbits
allow similar derivations of the −1/r-potential, which we
will give next. Historically this played no role since the
non-repeating orbits could not be determined with enough
precision at the time.

Derivation of the −1/r-potential from a parabolic Kepler
orbit. Let in the picture (below) |p| be the distance from
the sun at (1/4, 0) to a tangent of a parabolic Kepler orbit
and let |v| be the orbital speed at that moment. Conser-
vation of angular momentum says p · |v| = const. Let ϕ be
the angle between the segment marked p and the vertical
axis; since the sun is at the focal point of the parabola
we have p · sinϕ = 1/4. This and the previous angular
momentum equation say that, up to a choice of unit for
velocity, we have:

Kepler speed: |v| = sinϕ,

Angular momentum: p · |v| = 1/4.

If we call r the distance to the planet, than we also have
p/r = sinϕ = |v|. Multiplication with the angular mo-
mentum gives

Kinetic energy:
1

2
|v|2 =

1

8r
,

Potential energy:
−1

8r
.



r
p

 Sun = (1/4,0) 

 Planet = (a2,a) 

Derivation of the −1/r-potential from a hyperbolic Kepler
orbit. As before we call p the distance from the sun to
a tangent of the hyperbolic orbit and v the speed at that
orbit point.

r
p

p

v - 2p

T

Sun = (e,0) (-e,0) 
(-e-2a,0) 

 Planet = (a*cosh x, b*sinh x) 

Conservation of angular momentum says p · |v| = const.
We use the property of the circle (radius 2a) about prod-



ucts of segments on secants (which intersect at the sun S):
2p · |T − S| = (2e− 2a)(2e+ 2a) = 4b2.

Therefore, again up to the unit for velocity, we have iden-
tified the correct

Kepler velocity: v = |S − T |.

Finally, similar triangles give:
p/r = (v − 2p)/4a or 4a/r = v/p− 2,

and elimination of p with the angular momentum, i.e. with
1/p = v/2b2, shows that kinetic energy plus a radial func-
tion are constant – thus identifying the 1/r-potential:

4ab2/r = v2/2− 2b2.

Additional properties: As in the case of elliptical orbits
we see that the hodograph is a circle because the velocity
vector, rotated by 90 degrees, ends on the circle which we
used for the construction of the hyperbola. And if we add
to the endpoint of this rotated velocity a vector parallel
to the position vector and of constant length 2a then we
reach the midpoint of the circle, the other focal point of the
orbit. The constant(!) difference vector between the two
focal points, the geometric Runge-Lenz vector, differs from
the common definition by the constant factor (e− a)/2e.

H.K. Go To Planar TOC



Nephroid of Freeth *

This curve, first described 1879, is the member aa = 0 in
the following family of curves:

x(t) = (1− aa · sin(t/2)) cos(t)

y(t) = (1− aa · sin(t/2)) sin(t)

The default morph starts at aa = 0 with a circle, traversed
twice. For small aa > 0 one double point develops. At
aa = 1 the curve reaches the origin with a cusp. This
cusp deforms into a second double point. At aa =

√
2 the

two tangents of the double point coincide and are vertical.
This point of double tangency deforms into three double
points. The Nephroid of Freeth is reached at aa = 2, when
two of the mentioned three double points coincide with the
earliest one to form a triple intersection.
Apart from being in a simple family, which shows all these
singularities of curves, we learnt from
http://www.2dcurves.com/derived/strophoid.html

that the Nephroid of Freeth has the curious property that
one can construct a regular sevengon with it: The vertical
tangent at the triple intersection meets the curve again in
two points whose radius vectors enclose the angle 3π/7.

H.K.
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Sine *

The demo in 3D-XplorMath illustrates: If a unit circle
in the plane is traversed with constant velocity then it is
parametrized with the so-called trigonometric or circular
functions,

c(t) = (cos t, sin t).

History

The earliest known computations with angles did not yet
use degrees. In Babylonian astronomy angles were mea-
sured by their chord, i.e. by the base of an isocele triangle
with the vertex in the center of a unit circle and the other
vertices on the circumference. Hipparchus (180 - 125 BC)
is credited with the first table giving chords in terms of de-
grees. The table proceeded in steps of 60◦/16. Ptolemy (ca
90 - ca 168 AD) computed more accurate tables in steps
of 1◦. With these tables trigonometric functions had come
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into existence, in modern notation the function

chord: ϕ 7→ 2 sin( 2π
360

ϕ
2 ).

Astronomy needed computations with spherical triangles.
Initially these were done in geometric form, based on theo-
rems on quadrilaterals inscribed in circles. Around 800 AD
Arab astronomers developed the more streamlined compu-
tations based on properties of the functions sin and cos,
expressed in formulas similar to the ones in use today.
Since Newton’s time sin and cos are even more conve-
niently defined by their linear differential equations

sin′′ = − sin, sin(0) = 0, sin′(0) = 1;

cos′′ = − cos, cos(0) = 1, cos′(0) = 0.

The first derivatives sin′ = cos, cos′ = − sin and addition
theorems like

sin(a+ x) = sin(a) cos(x) + cos(a) sin(x),

cos(a+ x) = cos(a) cos(x)− sin(a) sin(x),

follow from the uniqueness theorems for such differential
equations (both sides satisfy the same ODE and the same
initial conditions). Also the identity

sin2(x) + cos2(x) = sin2(0) + cos2(0) = 1

which is needed to show “that sin and cos, defined by their
differential equations, indeed parametrize the unit circle
with unit velocity”, follows directly by differentiation.



With Euler’s discovery of the close connection between the
exponential and the trigonometric functions computations
became even more convenient, since one only needs

exp′ = exp, exp(0) = 1, exp(z + w) = exp(z) exp(w)

exp(x+ i y) = exp(x) · (cos(y) + i sin(y)).

In the 19th century approximation of functions by Fourier
polynomials PN (x) := a0 +

∑N
n=1 an cos(nx) + bn sin(nx)

lead to unexpected difficulties and corresponding deep in-
sights. The modern notion of a function and also the con-
cept of continuity have their roots in these studies.

Today, when high school kids first meet sine and cosine,
they do not meet them as real valued functions, but as
ratios of edge lengths in rectangular triangles. There is no
reference to a numerical algorithm that computes the val-
ues of sine and cosine from “angles”. The above addition
theorems emphasize this: if (c1, s1), (c2, s2) ∈ S1, then also
(c1c2 − s1s2, s1c2 + c1s2) ∈ S1. Note that this addition of
rational points gives again a rational point, and rational
points on S1 are the same as Pythagorean triples, namely
(a/b)2 + (c/d)2 = 1 is equivalent to (ad)2 + (bc)2 = (bd)2.
On this level sine and cosine belong to the geometry of
similar triangles, and indeed, the addition formulas can be
proved by using similarity of triangles. – So, what is the
relation between sine, cosine and angles? One answer is to
define sine, cosine in terms of their ODEs quoted above,
another is, to discuss first the arc length of the circle, which
means, define the inverse functions arcsine, arccosine first.



We come back to computations of sine and cosine below,
but first we return to the beginning. The following for-
mulas show (in modern notation) how the trigonometric
functions enter planar and spherical geometry.

Laws of Sines and Cosines

For any planar triangle with side lengths a, b and c, whose
opposite angles are α, β and γ respectively, we have:

c = a · cosβ + b · cosαProjection theorem:

b · sinα = hc = a · sinβSine theorem:

c2 = a2 + b2 − 2ab cos γCosine theorem:

In astronomy the corresponding formulas for spherical tri-
angles on the unit sphere played a much more important
role. They are:

cos a sin c =Projection theorem:

sin a cos c cosβ + sin b cosα

sin b · sinα = sin a · sinβSine theorem:

cos c = cos a cos b+ sin a sin b cos γ.Cosine thm:

A consequence of the first two theorems is the

Angle Cosine thm: cos γ = − cosα cosβ+sinα sinβ cos c.

For triangles with small edge lengths a, b, c the spherical
formulas become the planar ones if all terms that are at
least cubic in the edge lengths are ignored, i.e.

sin a ≈ a, cos a ≈ 1− a2/2, sin a cos c ≈ a.



Trivia

Orthogonal Projections of the Helix

The sinusoid is an orthogonal projection of the helix space
curve. In 3DXM, a helix can be seen in the Space Curves
category and, independently, via the Action Menu entry
Show Planar Curve As Graph, after selecting Circle.



The sinusoid is the development of an obliquely cut right
circular cylinder—i.e., the edge of the cylinder rolls out to
a sinusoid.

Numerical Computations

From the ODEs one immediately gets the Taylor series
(limN→∞ below) which are convenient to compute sine and
cosine for small arguments (so that small N are sufficient):

sinx ≈
N∑
k=0

(−1)k

(2k + 1)!
x2k+1, cosx ≈

N∑
k=0

(−1)k

(2k)!
x2k.

Numerical efforts can be greatly reduced with the simple



angle tripling formulas

P3(y) := 3y − 4y3,

sin(3x) = 3 sin(x)− 4 sin3(x) = P3(sinx),

cos(3x) = −3 cos(x) + 4 cos3(x) = −P3(cosx).

Accuracy, already with N = 2, is surprising:
0 = sinπ ≈ P3(P3(P3(Taylor5(π/27)))) ≈ −1.6 · 10−9.

Since sinx ≈ x is a very good approximation for small x we
get limn→∞ P ◦n3 (x/3n) = sin(x).

Or, much faster: limn→∞ P ◦n3 (Taylor5(x/3n)) = sin(x).

Since sin′(π) = −1, one can compute π with the Newton
iteration xn+1 := xn + sin(xn), x0 = 3.

This can also be seen as a consequence of arcsin(x) ≈ x
for small x and π/2 < x < π ⇒ π = x+ arcsin(sin(x)).
Then, using the better approximation:

arcsin(x) ≈ x+ 1
6x

3,
one gets the really fast iteration

xn+1 := F (xn) := xn + sin(xn) + 1
6 sin(xn)3.

Example: F (2.5) = 3.1342, F (F (2.5)) = 3.14159265358.

When Archimedes estimated π, he used the inverse of the
angle doubling formulas to compute the length of a regular
inscribed 2n-gon from the length of a regular n-gon, namely

cos(
x

2
) =

√
0.5(1 + cos(x)), sin(

x

2
) = 0.5 sin(x)/ cos(

x

2
).
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Lissajous Plane Curve *

The Lissajous curves show the orbits of two orthogonal
harmonic undamped oscillators.

Lissajous(t) :=

(
aa · sin(ee · t+ cc)
bb · sin(dd · t)

)
,

Default values: dd = 3, ee = 5, cc = 0.

If the parameters dd, ee are integers then the curves are
closed. Actually, a rational ratio is sufficient.
The default morph varies the phase cc, which changes the
curves a lot.

These planar curves have obvious analogues in R3.

H.K.
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Catenary *

The catenary is also known as the chainette, alysoid, and
hyperbolic cosine. It is defined as the graph of the function
y = a cosh(x/a). (Recall cosh(x) := (ex + e−x)/2, where
e = 2.71828 . . . is the base of the natural logarithms.)

The Catenary

The catenary is the shape an ideal string takes when hang-
ing between two points. By “ideal” is meant that the string
is perferctly flexible and inextensible, has no thickness, is
of uniform density. In other words the catenary is a mathe-
matical abstraction of the shape of a hanging string, and it
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closely approximates the shapes of most hanging string-like
objects we see, such as ropes, outdoor telecommunication
wires, necklaces, chains, etc. For any particular hanging
string, we will need to choose the parameter a correctly to
model that string.

Notice that except for scaling there is really only a sin-
gle catenary. That is, the scaling transformation (x, y) 7→
(ax, ay) maps the graph of y = a cosh(x/a) onto the graph
of y = cosh(x). The scaling transformation just amounts
to a change in the choice of units used to measure distances.

History

Galileo was the first to investigate the catenary, but he
mistook it for a parabola. James Bernoulli in 1691 ob-
tained its true form and gave some of its properties. [cf.,
Robert C. Yates, 1952]

Galileo’s suggestion that a heavy rope would hang in the
shape of a parabola was disproved by Jungius in 1669, but
the true shape of the catenary, was not found until 1690–
91, when Huygens, Leibniz and John Bernoulli replied to a
challenge by James Bernoulli. David Gregory, the Oxford
professor, wrote a comprehensive treatise on the ‘catenar-
ian’ in 1697. The name was first used by Huygens in a
letter to Leibniz in 1690. [cf., E.H.Lockwood, 1961].

[By the way, it is true that if you carefully weight a hanging
string so that their is equal weight of string per unit of
horizontal distance (rather than per unit of length) then



its shape will be a parabola, so Gallileo wasn’t so far from
the truth.]

The Catenary has numerous interesting properties.

Properties of the Catenary

Caustics

Parallel rays above the exponential curve

The Catacaustic of the exponential curve (x, ex) with light
rays from above and parallel to the y axes is the catenary.

The exponential function ex has interesting properties it-



self. It is the only function who agrees with its derivative.

Involute

The involute of catenary starting at the vertex is the curve
Tractrix . (In 3DXM, the involutes of a curve can be
shown in the menu Action → Show Involutes.) Note that
all involutes are parallel curves of each other. This is a
theorem.



Evolute

The evolute of the catenary is also the tractrix. (In 3DXM,
this can be seen from the menu Action→ Show Osculating
Circles.)



Radial and Kampyle of Eudoxus

The radial of the catenary is the Kampyle of Eudoxus. In
the figure above, the blue curve is half the catenary. The
green curve is the Kampyle of Eudoxus. The rainbow lines
are radii of osculating circles and their parallels through 0.

The Kampyle of Eudoxus is defined as the parametric curve
x = − cosh(t) sinh(t), y = cosh(t).



Catenoid

If you rotate the graph of x = cosh(y) about the y-axis,
the resulting surface of revolution is a minimal surface,
called the Catenoid. It is one endpoint of an interesting
morph you can see in 3DXM, by switching to the Sur-
face category, choosing Helicoid-Catenoid from the Surface
menu, and then choosing Morph from the Animate menu.
If you look closely you will see that during this morph dis-
tances and angles on the surface are preserved. See About
This Object... in the Documentation menu when Helicoid-
Catenoid is selected for a discussion of this.

XL. Go To Planar TOC



On Curves Given By Their Support Function *

This note is about smooth, closed, convex curves in the
plane and how to define them in terms of their so-called
Minkowski support function h. For quick reference we first
show how, in 3D-XplorMath, h can be modified by speci-
fying parameters. Then we begin with a more general class
of geometric objects, namely convex bodies.

1. Parameter Dependent Formulas

In 3D-XplorMath, the support function h is given in terms
of Fourier summands:

h(ϕ) := aa+ bb cos(ϕ) + cc cos(2ϕ)+

dd cos(3ϕ) + ee cos(4ϕ) + ff cos(5ϕ).

In terms of this function we define the following curve:

c(ϕ) := h(ϕ) ·
(

cos(ϕ)
sin(ϕ)

)
+ h′(ϕ) ·

(
− sin(ϕ)
+ cos(ϕ)

)
.

Differentiation shows that c is given in terms of its unit
normal and tangent vectors and the function h:

c′(ϕ) = (h+ h′′)(ϕ) ·
(
− sin(ϕ)
+ cos(ϕ)

)
.
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One obtains curves with nonsingular parametrization (|c′| >
0) if aa is choosen large enough. And since h(ϕ) equals the
scalar product between c(ϕ) and the unit normal n(ϕ) =
(cos(ϕ), sin(ϕ)) one has a simple geometric interpretation:
h(ϕ) is the distance of the tangent at c(ϕ) from the origin.

2. Background And Explanations

A convex body in Rn is a compact subset B having non-
empty interior and such that it includes the line segment
joining any two of its points. A hyperplane H in Rn is
called a supporting hyperplane of B if it contains a point
of B and if B is included in one of the two halfspaces defined
by H. It is not difficult to show that every boundary point
of B lies on at least one supporting hyperplane, and that
B is the intersection of all such halfspaces.

A smooth, closed, planar curves c is called convex if its
tangent at each point intersects c only at that one point.
The complement in R2 of such a curve has a single bounded
component, the interior of the curve, and one unbounded
component, its exterior . The curve is the boundary of its
interior, and we denote by B the curve together with its
interior. It is easy to see that B is a convex body in R2, as
defined above, and in fact the tangent line at any point of
c is the unique supporting hyperplane (= line!) contain-
ing that point. (There are of course more general planar
convex bodies. For example if P is a closed polygon in
R2 together with its interior, then P is a convex body, but
there are infinitely many supporting lines through each ver-



tex, while the supporting line containing an edge contains
infinitely many points.)

Now let O be some interior point of c and take O as the
origin of a cartesian coordinates by fixing a ray from O
as the positive x-axis. With respect to these coordinates,
at each point p on c the outward directed unit normal
at p will have the form n(ϕ) = (cos(ϕ), sin(ϕ)) where
ϕ = ϕ(p) satisfies 0 ≤ φ ≤ 2π. If we as usual think of
S1 as the interval [0, 2π] with endpoints identified, then it
can be shown that the map p 7→ ϕ(p) is a smooth one-
to-one map of c with S1, so that the inverse map gives a
parametrization c(ϕ) of the curve by S1. (This just says
that given any direction in the plane, there is a unique
point p on c where the outward normal has that direction,
and the point p varies smoothly with the direction.)

The Minkowski support function for the curve c is the func-
tion h defined on S1 by letting h(ϕ) be the distance from
the origin of the line of support (or tangent) through c(ϕ),
that is h(ϕ) := n(ϕ) · c(ϕ), the scalar product of c(ϕ) and
n(ϕ). From this definition it is easy to reconstruct the
curve in terms of its support function as in part 1.

3. Things To Observe

Recall one has in any parametrization the curvature for-
mula

n′(t) = κ(t)c′(t),
which in the present case reduces to:

1/κ(ϕ) = h(ϕ) + h′′(ϕ) = |c′(ϕ)|.



Clearly aa has to be large enough to make κ positive and
the parametrization nonsingular. Adding a linear combi-
nation of cos(ϕ) and sin(ϕ) to the support function cor-
responds to a change of only the origin, the shape of the
curve stays the same. The bb cos(ϕ)-term in the support
function is therefore not really necessary, but one can use
it to see how the parametrization of the curve changes.

The cos-terms in even multiples of ϕ make up the even
part (h(ϕ) + h(ϕ+ π))/2 of h. The origin is the midpoint
of curves with even support function. If h is odd except
for the constant term, i.e.,

h(ϕ) = aa+ (h(ϕ)− h(ϕ+ π))/2,
then one obtains curves of constant width w where:

w = h(ϕ) + h(ϕ+ π) = 2 aa.
The default curve in 3D-XplorMath is such a curve of con-
stant width and the default morph shows a family of such
curves. We emphasize the width of our curves by drawing
them together with their pairs of parallel tangents. Since
the (non-)constancy of the distance between these paral-
lel tangents is difficult to see we have added a circle of
the same width (= diameter). One cannot easily recog-
nize how many extrema the curvature κ(ϕ) has. To see it
clearly we recommend selecting the entry Show Osculating
Circles from the Action Menu, since the evolute has a cusp
at every extremal value of κ.

H.K. Go To Planar TOC



Tractrix *

The Tractrix is a curve with the following nice interpre-
tation: Suppose a dog-owner takes his pet along as he
goes for a walk “down” the y-axis. He starts from the
origin, with his dog initially standing on the x-axis at a
distance aa away from the owner. Then the Tractrix is the
path followed by the dog if he “follows his owner unwill-
ingly”, i.e., if he constantly pulls against the leash, keeping
it tight. This means mathematically that the leash is al-
ways tangent to the path of the dog, so that the length of
the tangent segment from the Tractrix to the y-axis has
constant length aa. Parametric equations for the Tractrix
(take bb = 0) are:

x(t) = aa · sin(t)(1 + bb)

y(t) = aa · (cos(t)(1 + bb) + ln(tan(t/2))).

The curves obtained for bb =/ 0 are generated by the same
kinematic motion, except that a different point of the mov-
ing plane is taken as the drawing pen. See the default
Morph.
The Tractrix has a well-known surface of revolution, called
the Pseudosphere, Namely, rotating it around the y-axis
gives a surface with Gaussian curvature -1. This means
that the Pseudosphere can be considered as a portion of
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the Hyperbolic Plane. The latter is a geometry that was
discovered in the 19th century by Bolyai and Lobachevsky.
It satisfies all the axioms of Euclidean Geometry except the
Axiom of Parallels. In fact, through a point outside a given
line (= geodesic) there are infinitely many lines that are
parallel to (i.e., do not meet) the given line.

There are many connections, sometimes unexpected, be-
tween planar curves. For the Tractrix select: Show Oscu-

lating Circles And Normals. One observes a Catenary
(see another entry in the curve menu) as the envelope of
the normals.

H.K.



Cissoid and Strophoid *

c(t) := 2aa

(
t(t2 − bb)
(1 + t2)

,
bb

2aa
+

t2 − bb
(1 + t2)

)
3DXM Family:

The additive constant bb/2aa in the y-coordinate has the
effect that the drawing mechanism is the same for the
whole family, try the default Morph in the Animate Menu.

History

Diocles ( 250 – ∼100 BC) invented the Cissoid to solve the
doubling of the cube problem (also know as the the Delian
problem). The name Cissoid (ivy-shaped) derives from the
shape of the curve. Later the method used to generate this
curve was generalized, and we call all curves generated in
a similar way Cissoids. Newton (see below) found a way
to generate the Cissoid mechanically. The same kinematic
motion with a different choice of the drawing pen generates
the (right) Strophoid, formulas below.

From Thomas L. Heath’s Euclid’s Elements translation
(1925) (comments on definition 2, book one):

This curve is assumed to be the same as that by
means of which, according to Eutocius, Diocles in
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his book On Burning-Glasses solved the problem
of doubling the cube.

From Robert C. Yates’ Curves and their properties (1952):

As early as 1689, J. C. Sturm, in his Mathesis
Enucleata, gave a mechanical device for the con-
structions of the Cissoid of Diocles.

From E.H.Lockwood A book of Curves (1961):

The name cissoid (“Ivy-shaped”) is mentioned by
Geminus in the first century B.C., that is, about a
century after the death of the inventor Diocles. In
the commentaries on the work by Archimedes On
the Sphere and the Cylinder, the curve is referred
to as Diocles’ contribution to the classic prob-
lem of doubling the cube. ... Fermat and Rober-
val constructed the tangent (1634); Huygens and
Wallis found the area (1658); while Newton gives
it as an example, in his Arithmetica Universalis,
of the ancients’ attempts at solving cubic prob-
lems and again as a specimen in his Enumeratio
Linearum Tertii Ordinis.



1 Description

The Cissoid of Diocles is a special case of the general cis-
soid. It is a cissoid of a circle and a line tangent to the
circle with respect to a point on the circle opposite to the
tangent point. Here is a step-by-step description of the
construction:

1. Let there be given a circle C and a line L tangent to
this circle.

2. Let O be the point on the circle opposite to the tangent
point.

3. Let P1 be a point on the circle C.

4. Let P2 be the intersection of line [O,P1] and L.

5. Choose Q on line [O,P1] with dist[O,Q] = dist[P1, P2].

6. The locus of Q (as P1 moves on C) is the cissoid of
Diocles.

An important property to note is that Q and P1 are sym-
metric with respect to the midpoint of the segment [O,P2].
Call this midpoint M. We can reflect every element in the
construction around M, which will help us visually see
other properties.



2 Formula derivation

Let the given circle C be centered at (1/2, 0) with radius
1/2. Let the given line L be x = 1, and let the given point
O be the origin. Let P1 be a variable point on the circle,
and Q the tracing point on line [O,P1]. Let the point (1, 0)
be A. We want to describe distance r = dist[O,Q] in terms
of the angle θ = [A,O, P1]. This will give us an equation
for the Cissoid in polar coordinates (r, θ). From elementary
geometry, the triangle [A,O, P1] is a right triangle, so by
trignometry, the length of [O,P1] is cos(θ). Similarly, tri-
angle [O,A, P2] is a right triangle and the length of [O,P2]
is 1

cos(θ) . Since dist[O,Q] = dist[O,P2] − dist[O,P1], we

have dist[O,Q] = 1
cos(θ) − cos(θ). Thus the polar equation

is r = 1
cos(θ) − cos(θ). If we combine the fractions and

use the identity sin2 + cos2 = 1, we arive at an equivalent
form: r = sin(θ) tan(θ).



3 Formulas for the Cissoid and the Strophoid

In the following, the cusp is at the origin, and the asymp-
tote is x = 1. (So the diameter of the circle is 1 (= aa in
3DXM).)

Parametric: (sin2(t), sin2(t) tan(t)) − π/2 < t < π/2.(
t2

(1 + t2)
,

t3

(1 + t2)

)
−∞ < t <∞Parametric: (

t2 − 1

(1 + t2)
,
t(t2 − 1)

(1 + t2)

)
−∞ < t <∞Strophoid:

Polar: r = 1
cos(θ) − cos(θ) − π/2 < t < π/2.

Cissoid: y2(1−x) = x3, Strophoid: y2(1−x) = x2(1+x).

The Cissoid has numerous interesting properties.

4 Properties

4.1 Doubling the Cube
Given a segment [C,B], with the help of the Cissoid of
Diocles we can construct a segment [C,M ] such that
dist[C,M ]3 = 2 ∗ dist[C,B]3. This solves the famous dou-
bling the cube problem.



Step-by-step description:

1. Given two points C and B.

2. Construct a circle c1, centered
on C and passing through B.

3. Construct pointsO and A on the
circle such that line [O,A] is per-
pendicular to line [C,B]

4. Construct a cissoid of Diocles us-
ing circle c1, tangent at A, and
pole at O.

5. Construct point D such that B
is the midpoint of segment[C,D].

6. Construct line[A,D]. Let the in-
tersection of cissoid and line[A,D]
be Q. (The intersection cannot
be found with Greek Ruler and
Compass. We assume it is a given.)

7. Let the intersection of line [C,D]
and line [O,Q] be M .

8. dist[C,M ]3 = 2 · dist[C,D]3.

This can be proved trivially with
analytic geometry.



4.2 Diocles’ Construction

By some modern common accounts
(Morris Kline, Thomas L. Heath),
here’s how Diocles constructed the
curve in his book

On Burning-Glasses:
Let AB and CD be perpendicular
diameters of a circle. Let E be a
point on arc[B,C], and Z be a point
on arc[B,D], such that BE, BZ are
equal. Draw ZH perpendicular to
CD. Draw ED. Let P be intersec-
tion[ZH,ED]. The cissoid is the lo-
cus of all points P determined by all
positions of E on arc[B,C] and Z on
arc[B,D] with arc[B,E]=arc[B,Z].
(The portion of the curve that lies
outside of the circle is a later gen-
eralization).

In the curve, we have CH/HZ=HZ/HD=HD/HP. Thus
HZ and HD are two mean proportionals between CH and
HP. Proof: taking CH/HZ=HZ/HD, we have CH ∗HD =
HZ2. triangle[D,C,Z] is a right triangle since it’s a trian-
gle on a circle with one side being the diameter (elemen-
tary geometry). We know an angle[D,C,Z] and one side
distance[D,C], thus by trignometry of right angles, we can
derive all lengths DZ, CZ, and HZ. Substituting the results



of computation in CH ∗ HD = HZ2 results an identity.
Similarly, we know length HP and find HZ/HD=HD/HP
to be an identity.

4.3 Newton’s Carpenter’s Square and Tangent

Newton showed that Cissoid of Diocles and the right Stro-
phoid can be generated by sliding a right triangle. The
midpoint J of the edge CF draws the Cissoid, the vertex F
the Strophopid. This method also easily proves the tangent
construction.

Step-by-step description:

1. Let there be two distinct fixed points B and O, both on
a given line j. (distance[B,O] will be the radius of the
cissoid of Diocle we are about to construct.)

2. Let there be a line k passing O and perpendicular to j.

3. Let there be a circle centered on an arbitrary point C
on k, with radius OB.



4. There are two tangents of this circle passing B, let the
tangent points be E and F.

5. Let I be the midpoint between E and the center of the
circle. Similarly, let J be the midpoint between F and
the center of the circle.

6. The locus of I and J (as C moves on k) is the cissoid
of Diocles and a line. Also, the locus of E and F is the
right strophoid.

Tangent construction for Cissoid and Strophoid: Think of
triangle[C,F,B] as a rigid moving body. The point C moves
in the direction of vector[O,C], and point B moves in the
direction of vector[B,F]. The intersection H (not shown)
of normals of line[O,C] and line[B,F] is its center of rota-
tion. J is the point tracing the Cissoid and is also a point
on the triangle, thus HJ is normal to the Cissoid. For
the Strophoid change the last sentence: Since the tracing
point F is a point on the triangle, thus HF is normal to
the Strophoid.
In 3D-XploreMath, this construction is shown automati-
cally when Cissoid is chosen from the Plane Curve menu,
just after the curve is drawn (or when it is redrawn by
choosing Create from the Action menu or typing Command-
K). In the Action Menu switch between Cissoid and Stro-
phoid. Hold down the option key to slow the anima-
tion, hold down Control to reverse direction, and press
the spacebar to pause.
In the animation, the tangent and normal are shown as



blue. The line from the critical point, from the so called
momentary fixed point of the motion, is normal to the
curve. This point is the intersection of the green lines; one
of them is a vertical drop, the other perpendicular to the
red line.

4.4 Pedal and Cardioid

The pedal of a cissoid of Diocles with respect to a point P
is the cardioid. If the cissoid’s asymptote is the line y = 1
and its cusp is at the origin, then P is at {0, 4}. It follows
by definition, the negative pedal of a cardioid with respect
to a point opposite its cusp is the cissoid of Diocles.



4.5 Negative Pedal and Parabola

The pedal of a parabola with respect to its vertex is the
cissoid of Diocles. (and then by definition, the negative
pedal of a cissoid of Diocles with respect to its cusp is a
parabola.)

4.6 Inversion and Parabola

The inversion of a cissoid of Diocles at cusp is a parabola.



4.7 Roulette of a Parabola

Let there be a fixed parabola. Let there be an equal
parabola that rolls on the given parabola in such way that
the two parabolas are symmetric to the line of tangency.
The vertex of the rolling parabola traces a cissoid of Dio-
cles.
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Conchoid *

3D-XplorMath parametrization:

r =
bb

cos t
+ aa, x = r · cos t, y = r · sin t.

History

According to common modern accounts, the conchoid of
Nicomedes was first conceived around 200 B.C by Nicomedes,
to solve the angle trisection problem. The name conchoid is
derived from Greek meaning “shell”, as in the word conch.
The curve is also known as cochloid.

From E. H. Lockwood (1961):

The invention of the ‘mussel-shell shaped’ conchoid
is ascribed to Nicomedes (second century B.C.) by
Pappus and other classical authors; it was a favorite
with the mathematicians of the seventeenth century
as a specimen for the new method of analytical ge-
ometry and calculus. It could be used (as was the
purpose of its invention) to solve the two problems
of doubling the cube and of trisecting an angle; and
hence for every cubic or quartic problem. For this
reason, Newton suggested that it should be treated
as a ‘standard’ curve.
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Description

The Conchoid of Nicomedes is a one parameter family of
curves. They are special cases of a more general conchoid
construction, being the conchoids of a line.

Step-by-step explanation:

1. Given a line `, a point O not on `, and a distance k.

2. Draw a line m through O and any point P on `.

3. Mark points Q1 and Q2 on m such that

distance[Q1, P ] = distance[Q2, p] = k.

4. The locus of Q1 and Q2 as P varies on ` is the con-
choid of Nicomedes.

The point O is called the pole of the conchoid, and the line
` is called its directrix . It is an asymptote of the curve.

The following figures shows the curve family. The pole is
taken to be at the origin, and directrix is y = 1. The figure



on top has constants k from −2 to 2. The one below has
constants k from −100 to 100.

Formulas

Let the distance between pole and line be b, and the given
constant be k. The curve has only the one parameter k,
because for a given b, all families of the curve can be gen-
erated by varying k (they differ only in scale). (Similarly,



we could use b as the parameter.) In a mathematical con-
text, we should just use b = 1, however, it is convenient to
have formulas that have both b and k. Also, for a given k,
the curve has two branches. In a mathematical context, it
would be better to define the curve with a signed constant
k corresponding to a curve of only one branch. We will
be using this intepretation of k. In this respect, the con-
choid of Nichomedes is then two conchoids of a line with
constants k and −k.

The curve with negative offset can be classified into three
types: if b < k there is a loop; if b = k, a cusp; and if b > k,
it is smoothly imbedded. Curves with positive offsets are
always smooth.

The following are the formulas for a conchoid of a line
y = b, with pole O at the origin, and offset k.

Polar: r = b/ sin(θ) + k, −π/2 < θ < π/2.

This equation is easily derived: the line x = b in polar
equation is r = b/ cos θ, therefore the polar equation is
r = b/ cos(θ) + k with −π/2 < θ < π/2 for a signed k (i.e.,
describing one branch.). Properties of cosine show that as
θ goes from 0 to 2π, two conchoids with offset ±|k| results
from a single equation r = b/ cos(θ) + k. To rotate the
graph by π/2, we replace cosine by sine.

Parametric:
(t+ (kt)/

√
b2 + t2, b+ (bk)/

√
b2 + t2), −∞ < t <∞.

If we replace t in the above parametric equation by b tan(t),



we get the form:

(k +
b

cos(t)
) · (sin(t), cos(t)),

−π
2

< t <
3π

2
, t 6= π

2
.

For conchoids of a line with positive and negative offsets k
and pole at the origin, we have the quartic

Implicit Cartesian equation: (x2 + y2)(y − b)2 = k2y2.

If k < b, the point at the origin is an isolated point.
If k < 0 and b < |k|, the conchoid has a loop with area
(b
√
k2 − b2 − 2bk ln((k +

√
k2 − b2)/b) + k2 arccos(b/k)).

The area between any conchoid of a line and its asymptote
is infinite.

Tangent Construction

Look at the conchoid tracing
as a mechanical device, where
a bar line [O,P ] slides on a
line at P and a fixed joint
O. The point P on the bar
moves along the directrix, and
the point at O moves in the
direction of the vector [O,P ].
We know the direction of mo-
tion of the bar at the points
O and P at arbitrary time.
The intersection of normals to these directions form the in-
stantaneous center of rotation N . Since the tracing points



Q1 and Q2 are parts of the apparatus, N is also their cen-
ter of rotation and therefore line [N,Q1] and line [N,Q2]
are the curve’s normals.

Angle Trisection
The curve can be used to solve the Greek Angle Trisection
problem. Given an acute angle AOB, we want to construct
an angle that is 1/3 of AOB, with the help of the conchoid
of Nicomedes.
Steps: Draw a line m intersecting segment [A,O] and per-
pendicular to it. Let D be intersection of m and the line
[A,O], L the intersection of m and the line [B,O]. Sup-
pose we are given a conchoid of Nicomedes, with pole at
O, directrix m, and offset 2 · distance[O,L]. Draw a line
` through L and perpendicular to m. Let C be the inter-
section of the curve and ` on the opposite side of the pole.

Theorem. angle[A,O,B] = 3 · angle[A,O,C].
Proof:
<)[A,O,C] =<)[O,C,L]
because the line [O,C]
cuts parallel lines. Let:
q be the line [O,C],
N := m ∩ q,
M midpoint of [N,C],
k := distance[O,L].
By our construction,

distance[N,M ] = distance[M,C] = k. Since NLC is a
right triangle, we see that MN , ML, MC, and OL all



have the same length, thus triangle [M,L,C] and triangle
[M,L,N ] are isosceles, and it follows that <)[N,M,L] =
2·<)[M,C,L]. Since distance[O,L] = distance[M,L], trian-
gle [M,L,O] is also isosceles, and thus its two base angles
are equal. This shows that an angle equal to <)[A,O,C] is
1/3 an angle equal to <)[A,O,B].

The essential point where the conchoid makes the trisec-
tion possible is in the construction of the point C on ` such
that distance[N,C] = 2 distance[O,L], where N is the in-
tersection of m and the line [O,C]. Note that for each
new angle to trisect, a new conchoid is needed. This is in
contrast to some other trisectrixes such as the quadratrix,
where all angles can be trisected once the curve is given.

The conchoid can also be used to solve the classic problem
of doubling the cube.
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Lemniscate *

The Lemniscate is a figure-eight curve with a simple me-
chanical construction attributed to Bernoulli: Choose
two ’focal’ points F1, F2 at distance L := 2 ∗ dd, then take
three rods, one of length L, two of length R = L/

√
2.

The short ones can rotate around the focal points and
the long one connects their free ends with rotating joints
(red lines in the figure). This machine has one degree of
freedom and the midpoint of the long rod traces out the
Lemniscate while the short rods rotate (not uniformly).
– This drawing mechanism will also work for arbitrary
lengths 0 < R < L,R := cc. The default morph in 3DXM
varies cc. Another interesting morph is obtained by vary-
ing the position of the drawing pen on the long rod with
ff ∈ (0, 1). Click the Init To Current Parameters but-
ton in Set Morphing, then put f0 := 0, f1 := 1.
Since the Bernoulli Lemniscate is much better known than
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curves drawn by mechanisms with parameters different
from L : R =

√
2 : 1, we will give, below, parametriza-

tions and equations only for the Bernoulli curve.
The curves in 3DXM are obtained as follows:
The endpoint of the right rod rotates with constant speed,
i.e. P (t) = (dd+ cc · cos(t), cc · sin(t)). The endpoint Q(t)
of the left rod is obtained by intersecting two circles (of ra-
dius R around F1 and radius L around P (t)). One of the
intersection points is P ′(t) = (−dd+ cc · cos(t), cc · sin(t)),
since |F2 − F1| = |P (t) − P ′(t)| = L = 2 · dd. Therefore
Q(t) is obtained by reflecting P ′(t) in the Diagonal F1P (t)
of the parallelogram F2, F1, P

′(t), P (t).
The drawing pen is at ff · P (t) + (1− ff) ·Q(t).

Mechanical constructions of curves give rise to simple tan-
gent constructions. We imagine that a plane is attached
to the long rod. Then every point of this plane traces out
a curve when the rods move. The velocity vectors of these
traced curves give, at each moment, a vectorfield, that has
concentric circles as integral curves (or, exceptionally, par-
allel lines). The centers of these concentric circles are the
momentary centers of rotation for the moving plane. If we
join a point of a traced curve to the corresponding mo-
mentary center of rotation, then this radius (drawn blue)
is orthogonal to the tangent (also blue).

How can one find the momentary center of rotation for
the current drawing machine? The endpoints of the two
short rods are points of the moving plane. We know that



each can only move orthogonally to its rod (namely rotate
around the other endpoint, a focal point). This says that
both short rods point to the momentary center of rotation,
which therefore is obtained as the intersection of two lines
(drawn green in the figure).
Compare the other mechanically constructed curves.

Parametrizations are not unique, here is a well known one:

x(t) := cos(t)/(1 + sin(t)2)

y(t) := sin(t) · cos(t)/(1 + sin(t)2).

The Bernoulli Lemniscate has this implicit equation:

(x2 + y2)2 = x2 − y2.

Divide this by r2 := x2 + y2 to get the polar form:

r2 = cos(φ)2 − sin(φ)2.

The points F1, F2 := ±1/
√

2 are called Focal points of the
Lemniscate because of the special property:

|P − F1| · |P − F2| = |F1 − F2|2/4.

If one takes the complex square root of a circle which
touches the y-axis from the right at 0 then one also obtains
(half of) a Lemniscate. In the Conformal Category, choose
z →

√
z, and then in the Action Menu, select Choose Cir-

cle by Mouse, and create a circle that is tangent to the
y-axis at 0.

The inversion map: (x, y) 7→ (x, y)/(x2 + y2) often trans-
forms some interesting curve into another interesting curve.



And indeed, the Lemniscate, with the above parametriza-
tion, is transformed by inversion into the curve

x = 1/ cos(t), y = sin(t)/ cos(t).

Observe the implicit equation x2 − y2 = 1. It shows
that the new curve is a hyperbola with orthogonal asymp-
totes. So we could have obtained the Bernoulli Lemnis-
cate from the orthogonal hyperbola by inversion in a cir-
cle around its midpoint. – More generally, inversions of
hyperbolae x2/a2 − y2/b2 = const give figure 8 curves
with non-orthogonal double tangents. The angle 2α be-
tween the double tangents is the same as the angle be-
tween the asymptotes and satisfies tanα = b/a. The an-
gle 2β between the double tangents of the figure 8 curves
of our drawing mechanisms satisfies sinβ = R/L. Set
a := R, b := a/

√
L2/R2 − 1 to obtain α = β. Invert, with

~x 7→ ~x · a2/|~x|2, the lemniscate and put the result into the
term x2/a2− y2/b2 to find that it is 1. This gives implicit
lemniscate equations: x2/a2 − y2/b2 = (x2 + y2)2/a4.
And, invert hyperbola parametrizations, e.g. x = a/ cos(t),
y = b sin(t)/ cos(t), to parametrize lemniscates.

We note that not every figure 8 curve (with orthogonal
double tangents) is a Bernoulli Lemniscate. Another figure-
eight is obtained by the simpler parametrization:

x(t) := cos(t), y(t) := sin(t) · cos(t),

which has the implicit equation y2 = x2(1− x2).

H.K. Go To Planar TOC



Clothoid *

The Clothoid, also called Spiral of Cornu, is a curve whose
curvature is equal to its arclength. It has the parametric
formula: (∫ t

0

cos(x2/2) dx,

∫ t

0

sin(x2/2) dx)

)
.

Discussion

If a plane curve is given by a parametric formula (f(t), g(t)),
then the length of the part corresponding to a parameter
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interval [a, t] is s(t) =
∫ t
a

√
f ′(τ)2 + g′(τ)2 dτ . If we ap-

ply this formula to the Clothoid we see that the arclength
corresponding to the interval [0, t] is s(t) =

∫ t
0

1 dt = t, so
that the parameter t is precisely the (signed!) arclength
measured along the curve from its midpoint, (0, 0).

Next, recall that the curvature κ of a plane curve is de-
fined as the rate of change (with respect to arclength) of
the angle θ that its tangent makes with some fixed line
(which we can take to be the x-axis). And since the slope
dy
dx of the curve is tan(θ), and by the chain rule dy

dx =

(dy/dt)/(dx/dt) = g′

f ′ , we see that θ(t) = arctan(g′(t)/f ′(t)).
So if we assume that parameter t is arclength, then using
the formulas for the derivative of the arctangent and of a
quotient, we see that:

κ(t) = θ′(t) = −g′(t)f ′′(t) + f ′(t)g′′(t),

(where we have ignored the denominator, since parame-
terization by arclength implies that it equals unity). Ap-
plying this to the Clothoid, we obtain κ(t) = t. Since the
arclength function is also t, this shows that the Clothoid
is indeed a curve whose curvature function is equal to its
arclength function.

The Fundamental Theorem of Plane Curves

Next let’s look at this question from the other direction,
and also more generally. Suppose we are given a function
κ(t). Can we find a plane curve parameterized by arclength
(f(t), g(t)) such that κ is its curvature function? Recall



from above that dθ
dt = κ, and of course dx

dt = f ′(t) and
dy
dt = g′(t). Now, since (dxdt )2 + (dydt )2 = 1, while dy

dt /
dx
dt =

dy/dx = tan(θ), it follows from elementary trigonometry
that dx

dt = cos(θ) while dy
dt = sin(θ). Thus we have the fol-

lowing system of three differential equations for the three
functions θ(t), f(t), and g(t):

θ′(t) = κ(t), f ′(t) = cos(θ(t)), g′(t) = sin(θ(t)).

The first equation is solved by θ(τ) = θ0 +
∫ τ

0
κ(σ) dσ, and

substituting this in the other two equations, we find that
the general solutions for f and g are given by:

f(t) = x0 +

∫ t

0

cos(θ0 +

∫ τ

0

κ(σ) dσ) dτ

g(t) = y0 +

∫ t

0

sin(θ0 +

∫ τ

0

κ(σ) dσ) dτ.

This is an elegant explicit solution to our question! It
shows that not only is there a solution to our question (say
the one obtained by setting x0, y0 and θ0 all equal to zero),
but also that the solution is unique up to a translation (by
(x0, y0)) and a rotation (by θ0), that is unique up to a
general rigid motion.

This fact has a name—it is called The Fundamental The-
orem of Plane Curves. It tells us us that most geometric
and most economical descriptions of plane curves is not via
parametric equations, which have a lot of redundancy, but



rather by the single function κ that gives the curvature as
a function of arclength.

Exercise Take κ(t) = t and check that the above formulas
give the parametric equations for the Clothoid in this case.

Back to the Clothoid

We close with a few more details about the Clothoid. First,
here is a plot of the integrand sin(x2/2):

and next a plot of its indefinite integral,
∫ t

0
sin(x2/2) dx,

the so-called Fresnel integral:



From this plot we see that the y-coordinate oscillates. Its
limit as t goes to infinity is

√
π/2, from which we see

that the centers of the two spirals of the Clothoid are at
±(
√
π/2,

√
π/2).
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Archimedean Spirals *

An Archimedean Spiral is a curve defined by a polar equa-
tion of the form r = θa. Special names are being given for
certain values of a. For example if a = 1, so r = θ, then it
is called Archimedes’ Spiral.

Archimede’s Spiral

Formulas in 3DXM:

r(t) := taa, θ(t) := t,
Default Morph:
−1 ≤ aa ≤ 1.25.

For a = −1, so r = 1/θ,
we get the reciprocal (or
hyperbolic) spiral:

Reciprocal Spiral
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The case a = 1/2, so r =
√
θ, is called the Fermat (or

hyperbolic) spiral.

Fermat’s Spiral

While a = −1/2, or r = 1/
√
θ, it is called the Lituus:

Lituus



In 3D-XplorMath, you can change the parameter a by go-
ing to the menu Settings → Set Parameters, and change
the value of aa. You can see an animation of Archimedean
spirals where the exponent a = aa varies gradually, be-
tween −1 and 1.25. See the Animate Menu, entry Morph.

The reason that the parabolic spiral and the hyperbolic
spiral are so named is that their equations in polar coor-
dinates, rθ = 1 and r2 = θ, respectively resembles the
equations for a hyperbola (xy = 1) and parabola (x2 = y)
in rectangular coordinates.

The hyperbolic spiral is also called reciprocal spiral be-
cause it is the inverse curve of Archimedes’ spiral, with
inversion center at the origin.

The inversion curve of any Archimedean spirals with re-
spect to a circle as center is another Archimedean spiral,
scaled by the square of the radius of the circle. This is
easily seen as follows. If a point P in the plane has polar
coordinates (r, θ), then under inversion in the circle of ra-
dius b centered at the origin, it gets mapped to the point
P ′ with polar coordinates (b2/r, θ), so that points having
polar coordinates (ta, θ) are mapped to points having po-
lar coordinates (b2t−a, θ).
From the above, we can see that the Archimedes’ spiral
inverts to the reciprocal spiral, and Fermat’s spiral inverts
to the Lituus.



The following two images illustrates Archimedes’s spiral
and Reciprocal spiral as mutual inverses. The red curve is
the reciprocal spiral, the purple is the Archimedes’ spiral.
The yellow is the inversion circle.



The following image illustrates a Lituus and Fermat’s spi-
ral as mutual inverses. The red curve is the Fermat’s spiral.
The blue curve is its inversion, which is a lituus scaled by
52. The yellow circle is the inversion circle with radius 5.
Note that points inside the circle gets mapped to outside of
the circle. The closer the point is to the origin, the farther
is its corresponding point outside the circle.
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The Logarithmic Spiral *

The parametric equations for the Logarithmic Spiral are:

x(t) =aa · exp(bb · t) · cos(t)

y(t) =aa · exp(bb · t) · sin(t).

This spiral is connected with the complex Exponential
Map as follows:

x(t) + i y(t) = aa exp((bb+ i)t).

The animation that is automatically displayed when you
select Logarithmic Spiral from the Plane Curves menu
shows the osculating circles of the spiral. Their midpoints
draw another curve, the evolute of this spiral. These os-
culating circles illustrate an interesting theorem, namely if
the curvature is a monotone function along a segment of a
plane curve, then the osculating circles are nested - because
the distance of the midpoints of two osculating circles is
(by definition) the length of a secant of the evolute while
the difference of their radii is the arc length of the evolute
between the two midpoints. (See page 31 of J.J. Stoker’s
“Differential Geometry”, Wiley-Interscience, 1969).

For the logarithmic spiral this implies that through every
point of the plane minus the origin passes exactly one os-
culating circle. Étienne Ghys pointed out that this leads

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/ Go To Planar TOC

http://3D-XplorMath.org/


to a surprise: The unit tangent vectors of the osculating
circles define a vector field X on R2 \ {0} – but this vec-
tor field has more integral curves, i.e. solution curves of
the ODE c′(t) = X(c(t)), than just the osculating circles,
namely also the logarithmic spiral. How is this compatible
with the uniqueness results of ODE solutions? Read words
backwards for explanation:

eht dleifrotcev si ton ztihcspiL gnola eht evruc.

Remarks about Spirals

All spirals with names share the following properties:
If they are left rotating their curvature is positive, and
negative for right rotating ones. If they are outgoing, the
absolute value of the curvature is monotone decreasing,
and increasing for those which spiral inwards. Moreover,
for every such curvature function κ(s) one can find a spiral,
with κ(s) its curvature function, as follows:
First find an antiderivative T (s) of κ(s), i.e. T ′(s) = κ(s).
Next define a unit field c′(s) :=

(
cos(T (s)), sin(T (s))

)
.

Finally obtain the spiral c(s) by integrating c′(s).

Therefore one may take the quoted curvature properties
as definition of a spiral. This has the consequence that a
spiral with curvature κ1(s) can be deformed into a spiral
with curvature κ2(s) through spirals with curvature

κa(s) := (1− a) · κ1(s) + a · κ2(s).

R.S.P., H.K. Go To Planar TOC



Cycloid *

Cycloids are generated by rolling a circle on a straight line
and tracing out the path of some point along the radius.
The parametric equation for such a cycloid is:

x(t) = aa · t− bb · sin t
y(t) = aa− bb · cos t,

where aa is the radius of the rolling circle and bb is the
distance of the drawing point from the center of the circle.

The choice bb = aa gives the standard cycloid.

Cycloids have other cycloids of the same size as evolutes,
see the Action Menu Entry Show Osculating Circles with
Normals. This fact is responsible for Huyghen’s cycloid
pendulum having its period independent of the amplitude
of the oscillation.

H.K.
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About Epicycloids and Hypocycloids *

See also the ATOs for Spherical Cycloids

Definition and tangent construction

Epicycloids resp. Hypocycloids are obtained if one circle of
radius r rolls on the outside resp. inside of another circle
of radius R.

In 3D-XplorMath: r = hh, R = aa.

The angular velocity of the rolling circle is fr times the
angular velocity of the fixed circle (negative for hypocy-
cloids). fr has to be an integer for the hypocycloid to be
closed. The formulas do not actually roll one circle around
another, they represent the curve as superposition of two
rotations:

fr := (R− r)/(−r);
c.x := (R− r) cos(t) + r cos(fr · t);
c.y := (R− r) sin(t) + r sin(fr · t);

Double generation: If one changes the radius of the rolling
circle from r to R−r then these formulas are preserved, ex-
cept for the parametrization speed. To view this in 3DXM
replace hh by aa− hh.
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Epicycloids are obtained if one circle of radius
r = −hh rolls on the outside of another circle of radius
R = aa. The angular velocity of the rolling circle is fr > 0
times the angular velocity of the fixed circle (again an in-
teger for closed epicycloids).

fr := (R+ r)/r;

c.x := (R+ r) cos(t)− r cos(fr ∗ t);
c.y := (R+ r) sin(t)− r sin(fr ∗ t);

These formulas agree with those of the hypocycloids except
for the sign of r. We view them in 3DXM by using negative
hh.

We can also use a drawing stick of length ii∗r. The default
morph shows this: 0.5 < ii < 1.5.

These more general (ii <> 1) rolling curves were impor-
tant for Greek astronomy because the planets orbit the sun
(almost) on circles. Therefore, when one looks at other
planets from earth, their orbits are (almost) such rolling
curves. It is no surprise that many of these curves have
individual names: Astroid, Cardioid, Limacon, Nephroid
are examples in 3DXM.

Tangent construction.
Rolling curves have a very simple tangent construction.
The point of the rolling circle which is in contact with the
base curve has velocity zero – just watch cars going by.
This means that the connecting segment from this point



of contact of the wheel to the endpoint of the drawing stick
is the radius of the momentary rotation. The tangent of
the curve which is drawn by the drawing stick is therefore
orthogonal to this momentary radius.
The 3DXM-demo draws the rolling curve and shows its
tangents.
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Cardioids and Limaçons *

Cardioids and Limaçons are obtained if on the outside of
one fixed circle of radius r = aa another circle of the same
radius rolls. These curves are traced by a radial stick of
length R = ii ∗ r, ii = 1 for Cardioids and ii > 1 for
Limaçons.

One choice of parametric equations for these curves is:

x(t) = 2r cos(t) +R cos(2t)

y(t) = 2r sin(t) +R sin(2t).

The evolute of the Cardioid is a smaller Cardioid, see in the
Action Menu the entry Show Osculating Circles with

Normals. In the entry Add Caustics one can rotate all
normals by a fixed amount and these rotated lines always
envelope a Cardioid.

To see the Cardioid generated by rolling a larger circle
around a smaller one choose in the exhibit Epi- and Hypocy-
cloids parameters hh = 2 ∗ aa, ii = 1.

The image of the unit circle under the complex map

z 7→ w(z) = z2 + 2z

is a Cardioid; images of larger circles (around 0) are Li-
macons. Inverses z 7→ 1/w(z) of Limaçons are figure-eight
shaped, including a Lemniscate.

H.K.
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Astroid *

Parametrization in 3DXM: c(t) := aa · (cos3(t), sin3(t)).

Implicit equation: x2/3 + y2/3 = aa2/3.

Description

An Astroid is a curve traced out by a point on the circum-
ference of one circle (of radius r) as that circle rolls without
slipping on the inside of a second circle having four times
or four-thirds times the radius of the first. The latter is
known as double generation. The Astroid is thus a special
kind of a hypocycloid—the family of analogous curves one
gets if one allows the ratios of the radii to be arbitrary.
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In 3D-XplorMath, the radius r is represented by the pa-
rameter aa. A nice geometric property of the Astroid is
that its tangents, when extended until they cut the x-axis
and the y-axis, all have the same length. This means, if
one leans a ladder (say of length L) against a wall at all
possible angles, then the envelope of the ladder’s positions
is part of an Astroid. Since (by symmetry) the tangent to
the Astroid at a point p closest to the origin has a slope
of plus or minus one, it follows that the distance of p from
the origin is L/2, and so L is the “waist-diameter” of the
Astroid, i.e., the distance from p to −p. Since the diagonal
of the Astroid clearly has length 2L, it is twice as long as
the waist-diameter.

It can be shown that the normals of an Astroid envelope
an Astroid of twice the size. (To see a visual demonstra-
tion of this fact, in 3D-XplorMath, select Show Osculating
Circles and Normals from the Action Menu.) If you think
about what this means, you should see that it gives a ruler
construction for the Astroid: Intersect each ladder (be-
tween the x-axis and the y-axis) for the smaller Astroid
with the orthogonal and twice as long ladder (between the
45-degree lines) for the larger Astroid.

More Formulas

The initial formulas give an astroid centered at the origin
with its four cusps lying on the axes at distance aa from



the origin. To derive a polynomial equation first cube both
sides of the above implicit equation (with aa = 1), factorize
and simplify:

1 = x2 + y2 + 3x4/3y2/3 + 3x2/3y4/3

1−x2 − y2 = 3x2/3y2/3(x2/3 + y2/3) = 3x2/3y2/3.

Then cube again:

(1− x2 − y2)3 = 27x2y2.

History

Quote from Robert C. Yates, 1952:

The cycloidal curves, including the astroid, were dis-
covered by Roemer (1674) in his search for the best
form for gear teeth. Double generation was first no-
ticed by Daniel Bernoulli in 1725.

Quote from E. H. Lockwood, 1961:

The astroid seems to have acquired its present name
only in 1838, in a book published in Vienna; it went,
even after that time, under various other names,
such as cubocycloid, paracycle, four-cusp-curve, and
so on. The equation x2/3 + y2/3 = a2/3 can, how-
ever, be found in Leibniz’s correspondence as early
as 1715.



Properties

Trammel of Archimedes and Envelope of Ellipses
Define the axes of the astroid to be the two perpendicular
lines passing through the pairs of alternate cusps. A fun-
damental property of the Astroid is that the length of the
segment of a tangent between these two axes is a constant.
The Trammel of Archimedes is a mechanical device that is
based on this property: it has a fixed bar whose ends slide
on two perpendicular tracks. The envelope of the moving
bar is then the Astroid, while any particular point on the
bar will trace out an ellipse.
The Astroid is also the envelope of co-axial ellipses whose
sum of major and minor axes is constant.



The Evolute of the Astroid

The evolute of an astroid is another astroid. (In fact, the
evolute of any epi- or hypo- cycloid is a scaled version of
itself.) In the first figure below, each point on the curve
is connected to the center of its osculating circle, while in
the second, the evolute is seen as the envelope of normals.

Curve Construction

The Astroid is rich in properties that can be used to devise
other mechanical means to generate the curve and to con-
struct its tangents, and the centers of its osculating circles.

Suppose we have a circle C centered at B and passing
through some point K. We will construct an Astroid that
is also centered at B and that has one of its cusps at K.

Choose the origin of a cartesian coordinate system at B,



and take the point (1, 0) atK. Given a point L on the circle
C, drop a perpendicular from L to the x-axis, and let M
be their intersection. Similarly drop a perpendicular from
L to the y-axis and call the intersection N . Let P be the
point on MN such that LP and MN are perpendicular.
Then P is a point of the Astroid, MN is the tangent to
the Astroid at P , and LP the normal at P . If D is the
intersection of LP and the circle C, and D′ is the reflection
of D thru MN , then D′ is the center of osculating circle
at P .



Pedal, Radial, and Rose

The pedal of an Astroid with respect to its center is a 4-
petaled rose, called a quadrifolium. The Astroid’s radial
is also a quadrifolium. (For any epi- or hypo- cycloid, the
pedal and radial are equal, and is a rose.)

Catacaustic and Deltoid

The catacaustic of a Deltoid with respect to parallel rays
in any direction is an Astroid.





Orthoptic

We recall that the orthoptic of a curve C is the locus of
points P where two tangents to C meet at right angles.
The orthoptic of the Astroid is the quadriffolium r2 =
(1/2) cos(2θ)2. [Robert C. Yates.]
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Deltoid *

The Deltoid curve was conceived by Euler in 1745 in con-
nection with his study of caustics.

Formulas in 3D-XplorMath:

x = 2 cos(t) + cos(2t), y = 2 sin(t)− sin(2t), 0 < t ≤ 2π,

and its implicit equation is:

(x2 + y2)2 − 8x(x2 − 3y2) + 18(x2 + y2)− 27 = 0.

The Deltoid or Tricuspid

The Deltoid is also known as the Tricuspid, and can be
defined as the trace of a point on one circle that rolls inside

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/ Go To Planar TOC

http://3D-XplorMath.org/


another circle of 3 or 3/2 times as large a radius. The latter
is called double generation. The figure below shows both of
these methods. O is the center of the fixed circle of radius
a, C the center of the rolling circle of radius a/3, and P
the tracing point. OHCJ, JPT and TAOGE are colinear,
where G and A are distant a/3 from O, and A is the center
of the rolling circle with radius 2a/3. PHG is colinear and
gives the tangent at P. Triangles TEJ, TGP, and JHP are
all similar and TP/JP = 2 . Angle JCP = 3∗Angle BOJ.
Let the point Q (not shown) be the intersection of JE and
the circle centered on C. Points Q, P are symmetric with
respect to point C. The intersection of OQ, PJ forms the
center of osculating circle at P.



The Deltoid has numerous interesting properties.

Properties

Tangent

Let A be the center of the curve, B be one of the cusp
points,and P be any point on the curve. Let E, H be the
intersections of the curve and the tangent at P. The seg-
ment EH has constant length distance[E,H]== 4/3*dis-
tance[A,B]. The locus of midpoint D of the tangent seg-
ment EH is the inscribed circle. The normals at E,P,H
are concurrent, and the locus of these intersections is the
circumscribed circle. If J is the intersection of another tan-
gent, cutting EH at right angle, then the locus traced by
J (the Deltoid’s orthoptic) is the inscribed circle.



The Deltoid and the Astroid

The caustic of the Deltoid with respect to parallel rays in
any direction is an Astroid.



Evolute

The evolute of Deltoid is another Deltoid. (In fact, the evo-
lutes of all epicycloids and hypocycloids are scaled version
of themselves.) In the above figure, the evolute is shown
as the envelope of its normals.



Simson Lines

The Deltoid is the envelope of the Simson lines of any
triangle. (Robert Simson, 1687–1768)



Step by step description:

1. Let a triangle be inscribed in a circle. 2. Pick any
point P on the circle. 3. Mark a point Q1 on any side
of the triangle such that line[P,Q1] is perpendicular to it,
extending the side if necessary. 4. Similarly, find points Q2
and Q3 with respect to P for the other two sides. 5. The
points Q1, Q2, and Q3 are colinear, and the line passing
through them is called the Simson line of the triangle with
respect to P. 6. Find Simson lines for the other points P
on the circle. Their envelope is the deltoid. Amazingly,
this is true for any triangle.

Pedal, Radial, and Rose



The pedal curve of a Deltoid with respect to a cusp, vertex,
or center is a folium curve with one, two, or three loops
respectively. The last one is called the trifolium, a three
petalled rose. The Deltoid’s radial is a trifolium too.
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The Nephroid *

The Nephroid is generated by rolling a circle of one ra-
dius on the outside of a second circle of twice the radius.
In 3D-XplorMath, either choose Nephroid from the Plane
Curve menu, or choose Circle, then select Set Parame-

ters... from the Settings menu and set hh = −0.5 · aa,
ii = 1. With R = 3r we thus have the parametrization for
Nephroids:

x(t) =R · sin(t) + r · sin(3t)

y(t) =R · cos(t) + r · cos(3t)

As with Cardioids and Limaçons, one can also make the
radius for the drawing stick shorter or longer: Set ii > 1
for the looping relatives of the Nephroid or see the default
Morph in the Animation menu.

The complex map z 7→ z3 +3z maps the unit circle to such
a Nephroid. To see this, in the Conformal Map Category,
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select z 7→ zee + eez from the Conformal Map menu, and
then choose Set Parameters from the Settings menu and
set ee to 3.

The normals of one Nephroid have as envelope another,
smaller Nephroid—the same phenomenon as for the Car-
dioid and the Cycloid. (To see this select Show Osculat-

ing Circles With Normals from the Action menu). In
technical jargon, the caustics for each of these curves is a
similar curve.
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About Mechanically Generated Curves *

Examples
Presently we have the following mechanically generated
plane curves programmed together with a decoration which
shows this generation and the corresponding construction
of the tangents of the curve:

Epi- and Hypocycloids,
all other rolling curves.
Also: Tractrix, Cissoid,
Conchoid, Lemniscate.

This image is obtained with Color Morph in the Anima-
tion menu, it shows the family obtained from the current
drawing mechanism (here Lemniscate).

Moving Planes
It is often convenient to discuss such mechanical genera-
tions in terms of two planes, a fixed plane on which the
drawing is done (paper plane) and a second plane which is
attached to that piece of the mechanical contraption that
holds the drawing pen (drawing plane). In the case of
rolling curves we have the drawing plane attached to the
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rolling wheel, in the case of the Lemniscate the drawing
plane is attached to the middle one of the three connected
moving segments.

We think of the orbits of the points of the drawing
plane as curves that are mechanically generated
by the apparatus under consideration.

The velocity vectors of these orbits clearly give a time de-
pendent vector field. Since this vector field is obtained by
differentiating the orbits of a family of isometries we ob-
tain at each time t the vector field of a Euclidean group of
motions, in other words: for most t the vector field con-
sists of the velocity vectors of a rotation, a rotation around
the so called momentary center of rotation. This way of
looking at the generation gives immediately tangent con-
structions for all orbits: join the momentary center of ro-
tation to the moving point, the perpendicular line through
the point is tangent to its orbit.
It is therefore useful to visualize the movement of the draw-
ing plane together with the time dependent velocity field
of its points. We have done this by decorating the draw-
ing plane with not too many but enough random points so
that the movement of the drawing plane becomes visible,
but the curve under consideration is not obscured. More-
over, to make the vector field visible at each moment t, we
have drawn the random points not once, but at two sub-
sequent positions. This picture is interpreted by the brain
correctly.
Finally, one has to determine the momentary center of ro-



tation. This is different for each construction. For rolling
curves the definition of “rolling” is such that that point,
where the rolling wheel touches the fixed curve (“street”),
is the momentary center of rotation. In general one has to
look for points of the mechanical apparatus for which the
direction of the momentary movement (“orbit tangent”)
can be decided. The momentary center is then on the line
(“radius”) perpendicular to the tangent, so that two such
lines are needed. The 3DXM demos use green lines to de-
termine the momentary center.
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Cubic Curves *

Real Cubic Curves in R2 were studied extensively by New-
ton. Later these curves were considered as the real points
of complex curves in C2. If they do not have double points
they can be parametrized by additive groups. This means
that the points on these curves can be added. Surprisingly
this addition is a geometric addition, i.e. the sum P + Q
can be geometrically constructed from P,Q and the curve.
In the case of cubic curves we have:

P +Q+R = 0 ⇔
A straight line intersects the curve in P,Q,R .

In 3D-XplorMath are the following examples:

Cubic Polynomial Graph, x(t) = t, y(t) = x(t)3 + aa · x(t),

Cuspidal Cubic, x(t) = 3t2/(4aa), y(t) = t(t2 + bb)/(4aa2),

Cubic Rational Graph I, x(t) = tan(t/2)/aa, y(t) = sin(t),

Cubic Rat’l Graph II, x(t) = tanh(t/2)/aa, y(t) = sinh(t),

Elliptic Cubic, x+ 1/x− aa · (y − 1/y) = ff (implicit),

Folium, [x, y] = aa[(t2− t3), (t− 2t2 + t3)]/(1− 3t− 3t2),

Nodal Cubic, x = 1− t2, y = ((1− t2) + bb) · t.
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The last two of these are cubics with one double point.
Their points do not form a group, therefore their Action
Menu has only the Standard Actions for plane curves.

All the others are parametrized by a 1-dim. Abelian group
and the curves are shown with a default demo explaining
the geometric addition.
If we intersect a Cubic Polynomial Graph without quadratic
term with a line, then the x-coordinates of the intersection
points are always roots of a polynomial without quadratic
term. In other words: these three x-coordinates add up to
0., the geometric addition is the standard addition on the
x-axis.
The Cuspidal Cubic is also parametrized by R (or C) and
a simple computation shows: if 1/t1 +1/t2 +1/t3 = 0 then
the three points [x(ti), y(ti)] lie on a straight line. And du-
ally, if t1 +t2 +t3 = 0 then the tangents at the three points
[x(ti), y(ti)] pass through one point. Again, the addition
has a simple geometric interpretation that allows to con-
struct, if two points and the curve are given, their sum.
The first Rational Cubic Graph is parametrized by a circle
S1 (we have to add the infinite point (∞, 0) ). The demo
that comes with the curve shows how the sum point can be
constructed by intersecting lines. The Action Menu offers
a second demo that shows how addition on the parametriz-
ing circle and on the curve are the same.
The second Rational Cubic Graph would not be here if we
could visualize these curves over the complex Numbers.
Over C one can think of this curve as the group S1 ⊕ R,



a cylinder. The first rational graph visualizes the equator
circle, the second one visualizes the generator through the
neutral element plus the opposite generator: two copies of
R (and a double point at ∞).
The Elliptic Cubic is parametrized by a pair of so called
Elliptic Functions. Such functions can be viewed either as
doubly periodic functions from C to S1 or as functions de-
fined on some torus. For more details see the text Elliptic
Functions.
The addition on elliptic curves can be compared with addi-
tion on the circle. The formulas for trigonometric functions

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

show that

(x1, y1)⊕ (x2, y2) := (x1x2 − y1y2, x1y2 + y1x2)

gives the addition of points (x1, y1), (x2, y2) ∈ S1. Notice
that the rational points (i.e. the pythagorean triples) are
a subgroup. The elliptic functions have analogous func-
tional equations which are similarly the basis for addition
formulas for points on elliptic cubics. This is explained in
the text Addition on Cubic Curves.
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Symmetries Of Elliptic Functions *

[The approach below to elliptic functions follows
that given in section 3 of ”The Genus One Helicoid
and the Minimal Surfaces that led to its Discovery”,
by David Hoffman, Hermann Karcher, and Fusheng
Wei, published in Global Analysis and Modern Math-
ematics, Publish or Perish Press, 1993. For conve-
nience, the full text of section 3 (without diagrams)
has been made an appendix to the chapter on the
Conformal Map Category in the documentation of
3D-XplorMath.]

An elliptic function is a doubly periodic meromorphic func-
tion, F (z), on the complex plane C. The subgroup L of C
consisting of the periods of F (the period lattice) is isomor-
phic to the direct sum of two copies of Z, so that the quo-
tient, T = C/L, is a torus with a conformal structure, i.e.,
a Riemann surface of genus one. Since F is well-defined
on C/L, we may equally well consider it as a meromorphic
function on the Riemann surface T .

It is well-known that the conformal equivalence class of
such a complex torus can be described by a single complex
number. If we choose two generators for L then, without
changing the conformal class of C/L, we can rotate and
scale the lattice so that one generator is the complex num-
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ber 1, and the other, τ , then determines the conformal class
of T. Moreover, τ1 and τ2 determine the same conformal
class if and only if they are conjugate under SL(2, Z).

The simplest elliptic functions are those defining a degree
two map of T to the Riemann sphere. We will be con-
cerned with four such functions, that we call JD, JE, JF,
and WP. The first three are closely related to the classical
Jacobi elliptic functions, but have normalizations that are
better adapted to certain geometric purposes, and simi-
larly WP is a version of the Weierstrass ℘-function, with
a geometric normalization. Any of these four functions
can be considered as the projection of a branched cover-
ing over the Riemann sphere with total space T , and as
such it has four branch values, i.e., points of the Riemann
sphere where the ramification index is two. For JD there
is a complex number D such that these four branch values
are {D,−D, 1/D,−1/D}. Similarly for JE and JF there
are complex numbers E and F so that the branch values
are {E,−E, 1/E,−1/E} and {F,−F, 1/F,−1/F} respec-
tively, while for WP there is a complex number P such that
the branch values are {P,−1/P, 0,∞}. The cross-ratio, λ,
of these branch values (in proper order) determines τ and
likewise is determined by τ .

The branch values E, F, and P of JE, JF, and WP can be
easily computed from the branch value D of JD (and hence
from dd) using the following formulas:



E = (D − 1)/(D + 1), F = −i(D − i)/(D + i),

P = i(D2 + 1)/(D2 − 1),

and we will use D as our preferred parameter for describing
the conformal class of T . In 3D-XplorMath, D is related
to the parameter dd (of the Set Parameter... dialog) by
D = exp(dd), i.e., if dd = a + ib, the D = exp(a) exp(ib).
This is convenient, since if D lies on the unit circle (i.e., if
dd is imaginary) then the torus is rectilinear, while if D has
equal real and imaginary parts (i.e., if b = π/4) then the
torus is rhombic. (The square torus being both rectilinear
and rhombic, corresponds to dd = i · π/4).

To completely specify an elliptic function in 3D-XplorMath,
choose one of JD, JE, JF, or WP from the Conformal
Map menu, and specify dd in the Set Parameter... dialog.
(Choosing Elliptic Function from the Conformal map menu
will give the default choices of JD and a square torus.)

When elliptic functions where first constructed by Jacobi
and by Weierstrass these authors assumed that the lattice
of the torus was given. On the other hand, in Algebraic
Geometry, tori appeared as elliptic curves. In this repre-
sentation the branch values of functions on the torus are
given with the equation, while an integration of a holo-
morphic form (unique up to a multiplicative constant) is
required to find the lattice. Therefore the relation between
the period quotient τ (or rather its SL(2, Z)-orbit) and the
cross ratio lambda of the four branch values has been well-
studied. More recently, in Minimal Surface Theory, it was



also more convenient to assume that the branch values of
a degree two elliptic functions were given and that the pe-
riods had to be computed. Moreover, symmetries became
more important than in the earlier studies.

Note that the four branch points of a degree two ellip-
tic function (also called ”two-division points”, or Zwei-
teilungspunkte) form a half-period lattice. There are three
involutions of the torus which permute these branch points;
each of these involutions has again four fixed-points and
these are all midpoints between the four branch points.
Since each of the involutions permutes the branch points, it
transforms the elliptic function by a Moebius transforma-
tion. In Minimal Surface Theory, period conditions could
be solved without computations if those Moebius trans-
formations were not arbitrary, but rather were isometric
rotations of the Riemann sphere—see in the Surface Cat-
egory the minimal surfaces by Riemann and those named
Jd and Je. This suggested the following construction: As
degree two MAPS from a torus (T = C/L) to a sphere, we
have the natural quotient maps T/−id; these maps have
four branch points, since the 180 degree rotations have
four fixed points. To get well defined FUNCTIONS we
have to choose three points and send them to {0, 1,∞}.
We choose these points from the midpoints between the
branch points, and the different choices lead to different
functions. The symmetries also determine the points that
are sent to {−1,+i,−i}. In this way we get the most sym-
metric elliptic functions, and they are denoted JD, JE, JF.



The program allows one to compare them with Jacobi’s
elliptic functions. The function WP = JE ∗JF has a dou-
ble zero, a double pole and the values {+i,−i} on certain
midpoints (diagonal ones in the case of rectangular tori).
Up to an additive and a multiplicative constant it agrees
with the Weierstrass ℘-function, but in our normalization
it is the Gauss map of Riemann’s minimal surface on each
rectangular torus.

We compute the J-functions as follows. If one branch
value is called +B, then the others are {−B,+1/B,−1/B}.
Therefore the function satisfies the differential equations

(J ′)2 = (J ′(0))2(J4 + 1− (B2 + 1/B2)J2) = F (J),

J ′′ = (J ′(0))2(2J3 − (B2 + 1/B2)J = F ′(J)/2).

Numerically we solve this with a fourth order scheme that

has the analytic continuation of the square root J ′ =
√
J ′2

built into it:
Let J(0), J ′(0) be given. Compute J ′′(0) := F ′(J(0))/2
and, for small z,

Jm := J(0) + J ′(0) · z/2 + J ′′(0) · z2/8, J ′′m := F ′(Jm)/2,

J(z) := J(0) + J ′(0) · z + (J ′′(0) + 2 · J ′′m) · z2/6.

Finally let J ′(z) be that square root of F (J(z)) that is
closer to J ′(0) + J ′′m · z (analytic continuation!). Repeat.
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Addition on Cubic Curves *

See also the Action Menu of the Parabola “Show Normals
through Mouse Point” and the comments in the ATO.
As an introductory example view the unit circle as a group.
Then the addition of angles φ ∈ (R mod 2π) gets translated
via the parametrization

x = cos(φ), y = sin(φ)
into

(x1, y1)⊕ (x2, y2) := (x1x2 − y1y2, x1y2 + x2y1).

Once this addition law is known one does not need the
transcendental functions sin and cos to “add” points on
the circle. Even to do this addition with ruler and compass
is easy. And it is amusing to note that the Pythagorean (or
rational) points of the circle are a subgroup, e.g. (3/5, 4/5)⊕
(12/13, 5/13) = ((36− 20)/65, (15 + 48)/65).

In a similar way there exists a geometric addition on cubic
curves, and if the cubic is parametrized with appropriate
functions (defined either on C, or on C/2πZ, or on C/Γ, Γ
a lattice in C) then the well known addition in the domain
is, under the special parametrization, the same as the ge-
ometric addition on the cubic. The simplest instance is
when the cubic is the graph of a cubic polynomial without
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quadratic term: y = x3 + mz + c. Then, if we have two
points (x1, y1), (x2, y2) on this cubic and join them by a
line, this line intersects the graph in a third point (x3, y3)
such that x1+x2+x3 = 0. This gives a geometric definition
of addition on this cubic graph.

Addition on a polynomial cubic graph without
quadratic term. Every line intersects so that x1 +
x2 + x3 = 0. Note discrete subgroup.

Similarly, let us map C bijectively onto the Cuspidal Cu-
bic by z 7→ (z2, z3). In this case, if we have z1 + z2 +
z3 = 0, then the tangents at the three points (z2

j , z
3
j )

are concurrent—we have seen this as a property of the
Parabola, because the Cuspidal Cubic is the evolute of
the Parabola. One can also see the previous colinearity as
reflecting addition, because the three points (z2

j , z
3
j ), j =

1, 2, 3, of this cubic lie on a line if 1/z1 + 1/z2 + 1/z3 = 0.



Addition on the cuspidal cubic z 7→ (z2, z3). Note
the discrete subgroup. If z1 + z2 + z3 = 0, then
the tangents at these three points are concurrent.
If 1/z1 + 1/z2 + 1/z3 = 0, then these three points
lie on a straight line.

The next case is the group C/2πZ. The trigonometric
functions identify points in C mod 2π. We map this group
to a cubic curve by x := tan(z/2), y := sin(z), so that
y = 2x/(x2 + 1) and this cubic is again a graph. The
addition theorems tan(z + w) = (tan(z) + tan(w))/(1 −
tan(z) tan(w)) and sin(z+w) = sin(z) cos(w)+cos(z) sin(w)
with cos(z) = 1− 2 sin(z/2)2 = 1− sin(z) · tan(z/2) again
give an addition on this cubic graph: it is a geometric addi-
tion because the three points (xj , yj) lie on one line iff z1 +
z2 + z3 = 0. The name “geometric addition” is even more
justified because the third point (x3, y3) can be constructed



with ruler and compass from the other two. In fact, for re-
peated additions a ruler suffices: As a preparation we have
to add to all points in sight the 2-division point (∞, 0) =
(tan(π/2), sin(π)) as follows: (x, y)⊕(∞, 0) = (−1/x,−y).
One needs ruler and unit circle for this. Then the lines
through (x1, y1), (x2, y2) and (x1, y1) ⊕ (∞, 0), (x2, y2) ⊕
(∞, 0) intersect in the point (x3, y3) = −(x1, y1)⊕ (x2, y2).

!

!

!

P2

P2+(    ,0)

P1

P3 := - (P1 + P2)

P1+(    ,0)

P3+(    ,0)

Addition group S1 on a cubic that is the graph
of x 7→ y = 2x/(x2 + 1), parametrized by x :=
tan(z/2), y := sin(z). Note the finite discrete
subgroup. (∞, 0) = (tan(π/2), sin(π)), the point
at infinity, is the only point of order 2.

So far we have seen the circle part of the cylinder group
C/2πZ. To see a generator of the cylinder we replace t, x, y
by it, ix, iy, then we obtain x := tanh(z/2), y := sinh(z),



so that y = 2x/(1 − x2). The component of the graph
through 0 is a subgroup isomorphic to R. It represents
one generator of the cylinder. The other two components
represent the opposite generator with one point missing:
the 2-division point opposite 0 is the point (∞, 0) on this
cubic. This allows the same ruler construction of addition
as before, except for a sign change in (x, y) ⊕ (∞, 0) =
(+1/x,−y) (because 1/i = −i).

(x,y)+(   ,0) = (1/x,-y)

!

!

!
!

P2

P1

P3 := - (P1 + P2)

P2+(    ,0)

P1+(    ,0)

P3+(    ,0)

Addition group R∪R on a cubic that is the graph
of x 7→ y = 2x/(1 − x2) and is parametrized by
x := tanh(z/2), y := sinh(z). (∞, 0) is the only
point of finite order. Note the infinite discrete
subgroup with one finite subgroup of order 2.

Finally we come to the group C/Γ. The parametrizing
functions of the previous example, tan(z/2), sin(z), must



be replaced by Γ-invariant, “doubly periodic” functions,
also called elliptic functions. The simplest of these are
those of degree two, as maps from the torus T 2 := C/Γ
to the Riemann sphere S2 = C ∪ {∞}. Two facts are
important:

(i) Pairs of such functions satisfy cubic equations such as
(w2 + 1)v = const · (v2 − 1)w. The solution set of any
cubic equation is called a cubic curve.

(ii) There are addition formulas, analogous to those for
sin and cos.
They determine the pair (v(z1 + z2), w(z1 + z2)) from
the pairs (v(z1), w(z1)) and (v(z2), w(z2)).

It turns out that these addition formulas are again “geo-
metric” as in the previous cases, namely, the three pairs
(v(z1), w(z1)), (v(z2), w(z2)), (−v(z1 + z2),−w(z1 + z2))
lie on a line. Therefore we can again define addition on
the cubic geometrically:

Join the points to be added by a line and take the third
point of intersection with the cubic as the negative of
the sum.

The addition formulas are simple enough so that the ge-
ometric addition is again a “ruler and compass construc-
tion”. The compass is only needed to add 2-division points
as in the previous case, all further additions can be done
by intersecting lines only.



w

v

P1 = (w,v)

P2

P3 = - (P1+P2)

P1+T = (-1/w,-v)

P2+T
P3+T

2-division point T = (     ,0), T+T = 0!

(Notice the discrete subgroup)

Addition on a general cubic:

(w1, v1)	(w2, v2) = (
w1 + w2

1− w1w2
· v1 − v2

v1 + v2
,

1 + w1w2

1− w1w2
· v1 − v2

1− v1v2
)

The elliptic functions v, w, parametrizing the above cubic
curve have numerous properties that can be used to define
them. For example, they are numerically accessible, since
they are solutions of the following system of differential



equations (compare tan′ / tan = 1/ cot + cot):

v′

v
= w′(0)

(
1

w
− w

)
,

w′

w
= v′(0)

(
1

v
+ v

)
,

with v′(0)/w′(0) = −2 for the above cubic. These imply
functional equations for v, w so that more similarities with
the trigonometric case, like (sin′)2 = 1− sin2, become ap-
parent: (

v′

v

)2

= w′(0)2

(
1

w
− w

)2

= w′(0)2

((
1

w
+ w

)2

− 4

)

= v′(0)2

((
1

v
− v
)2
)
− 4w′(0)2,

(v′)2 = v′(0)2

(
(1− v2)2 − 4

w′(0)2

v′(0)2
· v2

)
.and hence:

Every differential equation

(f ′)2 = F (f) implies 2f ′′ = F ′(f).

The first order equation determines f ′ only up to sign while
the second order equation determines f ′′ uniquely, in par-
ticular for trigonometric and elliptic functions.
H.K. Go To Planar TOC



Folium of Descartes *

This is a famous curve with a long history (see e.g.
http:\\www-history.mcs.st-andrews.ac.uk
/Curves/Curves.html). The curve is the solution set of
the equation

x3 + y3 = 3axy.

One can see that the solutions for different a differ only
by scaling, namely divide the equation by a3 and replace
x/a, y/a by x, y.

The two most frequently given parametrizations are:

x(t) =
3t

1 + t3
, y(t) =

3t2

1 + t3
,

r(ϕ) =
sin 2ϕ

sin3 ϕ+ cos3 ϕ
, −π/4 < ϕ < 3π/4.

The first parametrization has the disadvantage that at
t = −1 the denominator vanishes, the curve jumps “from
minus infinity to plus infinity”, while the important dou-
ble point at 0 ∈ R2 is left out (or given by t = ∞). This
can be remedied by the transformation u = 1/(1 + t), t =
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−1 + 1/u, which changes the parametrization to

x(u) =
u2 − u3

1− 3u+ 3u2
, y(u) =

u− 2u2 + u3

1− 3u+ 3u2
,

−∞ < u <∞.

H.K. Go To Planar TOC



About Implicit Curves in the Plane *

Compare Implicit Surfaces in Space

There are three principal methods for describing curves in
the plane:

a) As parametrized curves c(t) = (x(t), y(t)) with x, y :
(t0, t1) 7→ R. For example the unit circle can be given as

x(t) = R · cos(t), y(t) = R · sin(t), t ∈ [0, 2π].

b) As the graph y = F (x) of a function F : [x0, x1] 7→ R.
For example the upper unit semi-circle can be given as the
graph of the function F (x) =

√
1− x2 for x ∈ (−1,+1).

c) Implicitly as a level set {f = c} of a function f : R2 7→ R.
For example the unit circle is the level {f = 1} of the
function f(x, y) = x2 + y2.

Implicit Curves in 3DXM:

Cassini Ovals f(x, y) = ((x−aa)2+y2)((x+aa)2+y2)−bb4
Tacnodal Quartic f(x, y) = y3 + y2 − x4

Teissier singular Sextic f(x, y) = (y2 − x3)2 − x5 · y
Userdefined Implicit Curves: available
Parametrized Curves with Level Functions:
Cuspidal Cubic f(x, y) = 27aa · y2 − 4(x+ bb)x2

Nodal Cubic f(x, y) = y2 − (1− x)x2

Clearly, method b) can easily be written as a special case
of methods a) or c) by using for a) the “graph parametriza-
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tion” x(t) = t, y(t) = F (t), and by using for c) the trivial
level function f(x, y) = y − F (x) and {f = 0}.
However, implicit curves {f(x, y) = c} really give a dif-
ferent and somewhat richer class of objects than are given
by explicit parametrization. For example, level sets may
have several components; also, one is more interested in
the singularities of level sets. In differential geometry one
usually assumes that parametrized curves are without sin-
gularities, while in algebraic geometry the singularities of
the level sets of polynomials are a major subfield of in-
terest. The Tacnodal Quartic and the Teissier Sextic are
examples in 3DXM.

Up to release 10.6 there are only a small number of im-
plicit curves preprogrammed into 3DXM. What actually
gets drawn are the solutions of the equation f(x, y) = ff
with xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax (where these
limits can be set in the Settings Menu, dialog entry Set
t,u,v,ranges... and, as always, ff can be set in the dialog
entry Set Parameters, Modify Object.
Note that user-defined implicit curves can be entered.

The default morphs of the implicit curves vary the param-
eter ff , so that, what one sees is a family of level curves
of f . It may be helpful to think of the function f(x, y) as
giving the “height above sea-level” at the point (x, y), in
which case the levels {f(x, y) = ff} are just the level lines
one is used to from topographic maps. If one chooses from
the Animation Menu the entry Color Morph, the program
will draw such a topographic map with each level line a



different color.
Some parametrized curves are provided with level func-
tions. For these the Animation Menu has the entry Morph
Level Lines. In the Cassini case this morph looks better
with morphing parameter bb = ff1/4.

Note that, while a parametrized curve depends on param-
eters only if the author chooses to embed it in some fam-
ily, implicit curves always come naturally as 1-parameter
family of curves. These families have been used to study
singularities of curves via limits of nonsingular curves.

Tangents, Normals and Curvature

The gradient of the (height) function f is a vectorfield
along and normal to the level lines. Therefore we have,
even without parametrizing the curve, normals and tan-
gents:

n =
grad f

|grad f |
, t = (−ny, nx).

Assuming we had a parametrized curve with unit normal
and tangent fields n, t then the formula ṅ(s) = κ(s) · ċ(s)
holds whether or not s is arc length parameter. This im-
plies for our vector fields

κ = 〈∇tn, t〉 = hessef(t, t)/|grad f |.
There is an Action Menu entry Osculating Circles At

Mouse Point. It shows several level curves and the oscu-
lating circle to the level curve at the mouse point.

R.S.P. Go To Planar TOC



Cassinian Ovals *

Level function in 3DXM:

f(x, y) := ((x− aa)2 + y2) · ((x+ aa)2 + y2)− bb4

The default Color Morph varies bb = ff1/4 instead of ff .

The Cassinian Ovals (or Ovals of Cassini) were first studied
in 1680 by Giovanni Domenico Cassini (1625–1712, aka
Jean-Dominique Cassini) as a model for the orbit of the
Sun around the Earth.

A Cassinian Oval is a plane curve that is the locus of
all points P such that the product of the distances of P
from two fixed points F1, F2 has some constant value c, or
P F1 P F2 = c. Note the analogy with the definition of an
ellipse (where product is replaced by sum). As with the el-
lipse, the two points F1 and F2 are called foci of the oval. If
the origin of our coordinates is the midpoint of the two foci
and the x-axis the line joining them, then the foci will have
the coordinates (a, 0) and (−a, 0). Following convention,
b :=

√
c. Then the condition for a point P = (x, y) to lie on

the oval becomes: ((x−a)2 +y2)1/2((x+a)2 +y2)1/2 = b2.
Squaring both sides gives the following quartic polynomial
equation for the Cassinian Oval:

((x− a)2 + y2)((x+ a)2 + y2) = b4.

When b is less that half the distance 2a between the foci,
i.e., b/a < 1, there are two branches of the curve. When
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a = b, the curve has the shape of a figure eight and is
known as the Lemniscate of Bernoulli.

The following image shows a family of Cassinian Ovals
with a = 1 and several different values of b.

In 3D-XplorMath, you can change the value of parameter
b = bb in the Settings Menu → SetParameters. An anima-
tion of varying values of b can be seen from the Animate
Menu → Color Morph.

Bipolar equation: r1r2 = b2

Polar equation: r4 + a4 − 2r2a2 cos(2θ) = b4

A parametrization for Cassini’s oval is r(t)·(cos(t), sin(t)),

r2(t) := a2 cos(2t) +
√

(−a4 + b4) + a4(cos(2t))2,

t ∈ (0, 2π], and a < b. This parametrization only generates
parts of the curve when a > b.



By default 3D-XplorMath shows how the product defi-
nition of the Cassinian ovals leads to a ruler and circle
construction based on the following circle theorem about
products of segments:

Cassinian Ovals as sections of a Torus

Let c be the radius of the generating circle and d the dis-
tance from the center of the tube to the directrix of the
torus. The intersection of a plane c distant from the torus’
directrix is a Cassinian oval, with a = d and b2 =

√
4cd,

where a is half of the distance between foci, and b2 is the
constant product of distances.

Cassinian ovals with a large value of b2 approch a circle,
and the corresponding torus is one such that the tube ra-
dius is larger than the center to directrix, that is, a self-
intersecting torus without the hole. This surface also ap-
proaches a sphere.
Note that the two tori in the figure below are not identical.



Arbitrary vertical slices of a torus are called Spiric Sec-
tions. In general they are not Cassinian ovals.

Proof: Start with the equation of a torus

(
√
x2 + y2 − d)2 + z2 = c2.



Insert y = c, rearrange and square again:

x2 +z2 +d2 = 2d
√
x2 + c2, (x2 +z2 +d2)2 = 4d2(x2 + c2).

Now multiply the factors of the implicit equation of an
Cassinian oval and rearrange

((x− a)2 + y2) · ((x+ a)2 + y2) = b4,

(x2 − a2)2 + y4 + 2y2(x2 + a2) = b4,

(x2 + y2)2 + 2a2(y2 − x2) = b4 − a4.

These two equations match because of a = d, b2 = 2dc,
after rotation of the y-axis into the z-axis.

Curves that are the locus of points the product of whose
distances from n points is constant are discussed on pages
60–63 of Visual Complex Analysis by Tristan Needham.
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User Defined Plane Curves in 3DXM *

Selection of one of these entries will open a dialog to enter
the data the user wishes. Default examples are provided.

User Cartesian: enter x(t) := . . . , y(t) := . . ..

User Polar: enter r(t) := . . . , ϕ(t) := . . ..
The curve is (r(t) cos(ϕ(t)), r(t) sin(ϕ(t))).

User Graph: enter y(t) := . . ., implied is x(t) := t. The
curve (t, y(t)) is the Graph of the function y. Three ap-
proximations are shown:Taylor, Interpolation, Fourier.

These are the explicitly parametrized user curves. The
standard decorations are available: Parallel Curves, Gen-
eralized Cycoids, Osculating Circles, Family of Normals
and their Envelope, Caustics from Rotated Normals.

User Implicit: enter level function F (x, y) := . . ..
See the separate text: Implicit Planar Curves above, avail-
able also from the Documentation Menu (after selection of
user defined implicit curve).

User Curvature: enter the curvature function κ(s) := . . ..
The program assumes that the parameter s is arc length.
See also the text below: User Curves By Curvature, again
available from the Documentation Menu of 3DXM.
H.K.
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User Defined by Curvature *

A planar curve (parametrized by arc length) can be recon-
structed from its curvature function t 7→ κ(t) as follows:

(1) take the antiderivative of κ, α(t) :=
∫ t
κ(σ)dσ,

(2) choose an initial point p, an initial tangent vector ċ(0)
and an orthonormal basis e1 = ċ(0), e2,

so the definition of curvature (namely κ := |c̈|, plus a sign
convention) implies that,

(3) ċ(t) = e1 · cosα(t) + e2 · sinα(t).

Then one more integration,

(4) c(t) = p+
∫ t

0
ċ(σ)dσ,

determines the curve. This description explains why the
curvature is also called the “rotation speed” of the tangent
vector field ċ(t).

In 3D-XplorMath one can select User Curvature. A dialog
box opens and one can enter the desired curvature func-
tion. The initial point p is taken as the origin and the
initial tangent is taken as the unit vector in the positive
x-direction.

The parameter gg in this case defines a “precision divi-
sor”, that can be between 1 and 30. The size of the
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subintervals used in approximating the above integrals is
δ := (tMax − tMin)/(tResolution − 1) if gg = 1, and in
general it is δ/gg. If the curvature function κ becomes
very large somewhere, and in particular if it is infinite at
an endpoint of the interval [tMin, tMax], it is a good idea
to use a fairly large value of gg to counteract the resulting
numerical inaccuracies that will occur in the evaluation of
the integrals.

Note that 3D-XplorMath offers the same Action Menu En-
tries as for explicitly parametrized curves. For example try
the caustics.

R.S.P. Go To Planar TOC



Graphs of Functions, Graphs of Planar Curves *

1-dimensional functions are always visualized by drawing
their graphs {(x, f(x)}, while planar curves, although usu-
ally described as maps: t ∈ [t0, t1] 7→ c(t) ∈ R2, are nev-
ertheless visualized by their image, the set of their val-
ues: {c(t) ∈ R2; t ∈ [t0, t1]}. The graph allows to see,
for each argument x, the value f(x); the image shows no
connection between the points of the curve and the argu-
ments t ∈ [t0, t1]. This leads to difficulties if one wants to
visualize the connection between a curve and “its” com-
ponent functions, because the image of a curve does not
show traces of the map that was used to draw it. There-
fore, strictly speaking, the image of a curve does not have
“its” component functions. We need to have some specific
parametrization t 7→ c(t) of the curve in mind before we
can speak of “the” component functions of the curve, or
better of its representing map t 7→ c(t).

In 3D-XplorMath many planar curves have an Action Menu
entry: Project Curve to x-y-Axes. The resulting demo
shows the curve and the graphs of the component functions
of the curve that the program uses for drawing the image
of the curve. A moving point on the curve and correspond-
ing moving points on the graphs are shown. The moving
point on the curve demonstrates the parametrization that
is employed by the program.
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Epicycloid with graphs of component functions.

We have enough dimensions to also show the graph of a
parametrized planar curve, {(t, c(t)); t ∈ [t0, t1]} ⊂ R3.
This is not used much, except for world lines in Relativ-
ity Theory. However, the graphs of the component func-
tions of the curve are just orthogonal projections of the
graph of the curve! So, after getting used to the unusual
sight of the graph of a curve, see in 3D-XplorMath the
Action Menu entry Show Planar Curve as Graph, such
a demo may help to bridge the gap between the graph
representation of 1-dim functions and the image repre-
sentation of higher dimensional maps. Actually, in R3



there are only two more cases for which the dimensions fit,
the frequently used graphs of real valued “height” func-
tions h from R2: {(x, y, h(x, y)); (x, y) ∈ R2, h(x, y) ∈ R}
(think of “mountains”) and the mentioned graphs of pla-
nar curves: {(t, c(t)) ∈ R3; t ∈ [t0, t1]}, which are curves
in R3 that frequently look like deformed helices.

Epicycloid in y-z-plane and its graph in R3.

This image is easier to interprete when the point of the
curve moves and when the visualization is in stereo.
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The Helix *

The helix is the simplest nonplanar space curve. It can
be translated along itsself by a group of isometries (called
screw motions) and therefore has its geometric invariants
– the curvature and the torsion – constant.
Our (circular) helix as a parametrized curve c is given (with
defaults aa = bb = 1.5, cc = 0.25) as

c(t) = (aa cos(t), bb sin(t), cc(t− tmin)− 3).

In the default Morph we extend the helix like pulling a bed
spring and therefore want to keep its length constant. To
do this we compute f := (aa2 + cc2)−1/2 and show the
reparametrized curve c(f · t).
Before we do the morph we select from the Action Menu
Show As Tube. These tubes are either made with the
’Frenet Frame’ or with a ’Parallel Frame’. The tube be-
haves like an elastic rod if we choose in the Action Menu
Parallel Frame. The default morph now shows (at the
right end, the left is kept fixed) that the tube also twists
around itsself while it is extended. When this occurs with
electrical wires or water hoses that are pulled sideways
from their coil, it is a well known and annoying phenomenon.

H.K.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/ Space Curve TOC

http://3D-XplorMath.org/


Torus Knots *

Torus knots are quite popular space curves because they
represent the simplest way to write down knotted curves
in R3. Our knots are parametrized as

c(t) :=

 aa+ bb · cos(dd · t) · cos(ee · t)
aa+ bb · cos(dd · t) · sin(ee · t)

cc · sin(dd · t)


with defaults aa = 3, bb = 1.5, cc = 1.5, dd = 5, ee = 2.

The default Morph changes the torus size. If, before the
morph, one chooses in the Action Menu Show As Tube and
Parallel Frame then one notices that the twisting of the
tube (see the ATO of the helix for more details) is clearly
visible already for rather small changes of the shape of the
torus.

The Action Menu has also the entry Show Dotted Torus.
Selecting it adds the torus to the picture. This is more
spectacular when viewing in Anaglyph Stereo Vision,
through red/green filter glasses. Observe that our brain
gets these several thousand dots sorted out into corre-
sponding pairs of red and green dots that then form the
torus surface in R3 - and this seems to happen instantly.
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The best method to get a feeling for the curvature of a
space curve is to select in the Action Menu Show Oscu-

lating Circles & Evolute. The Radius r of the circle
is the radius of curvature of the curve at the current point
and κ := 1/r is called the curvature (at that point). The
direction from c(t) to the midpoint of the osculating circle
determines always the direction of the second basis vector
of the Frenet frame.
If one uses the Parallel Frame, then one has to represent
the curvature by a vector of length κ in the plane spanned
by the two normal vectors of the Parallel frame. If one has
selected, in the Action Menu, Parallel Frame and clicks
Show Repére Mobile then this curvature vector is drawn,
together with its past history, in each normal plane. – The
last entry in the Action Menu, Show Frenet Integration

does the opposite: if the curvature vector function is given
in the initial normal plane then the demo reconstructs the
curve by integrating the Frenet equation.

H.K. Space Curve TOC



Genus Two Knots *

Torus Knots , see the previous entry, are the most easily
described knots and, in particular when viewed on a torus,
they are also very easy to visualize.

If one wants to visualize other knots on some surface, one
needs more complicated surfaces than tori. From this point
of view the next simplest knots can be put on a genus 2
surface. The surface we chose looks like two tori which are
joined by a small handle. (The size of these tori is con-
trolled by the parameters aa and bb as for torus knots.)
The surface is implicitly described by an equation (see im-
plicit surfaces in the surface category) and can be made
fatter by increasing ff. As examples of genus 2 knots we
chose the connected sums of two (dd, ee) - torus knots. The
sign of hh controls whether the two torus knots are con-
nected with reflectional symmetry or with 180◦ rotational
symmetry. The two simplest examples are the Square Knot
and the Granny Knot where two (3, 2) - torus knots (=Tre-
foil Knots) are connected with the two types of symmetry,
see Figure 8 -, Square - and Granny Knots .

The sum of the two torus knots is first constructed outside
the surface, then projected onto the surface and finally
smoothed with a length minimizing algorithm. The result
is good enough for tubes made with a Parallel frame, but
the tube from the Frenet frame is not smooth. – H.K.
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Cinquefoil Knot *

Parametric Formulas for the Cinquefoil Knot:

P.x := (2− cos(2 t/(2 aa+ 1))) · cos(t);

P.y := (2− cos(2 t/(2 aa+ 1))) · sin(t);

P.z := − sin(2 t/(2 aa+ 1));

The choice aa = 1 gives a Trefoil knot, aa = 2 the Cinque-
foil, and in general aa = k gives the (2k+1)-foil knot (the
program rounds aa before using it). The parameter range
for t should be 0 to (4 k+2) π. If you change aa in the Set
Parameters... dialog, then these values of tMin and tMax
are set also, but you can change them later in the Set t,u,v
Ranges... dialog.

A nice animation of the Cinquefoil knot can be obtained
by first choosing Show As Tube from the Action menu,
Anaglyph Stereo Vision from the View menu, and then
Rotate from the Animation menu.

R.S.P.
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Trefoil Knot *

Parametric formulas for the Trefoil Knot:

x = 0.01 (41 cos(t)− 18 sin(t)− 83 cos(2 t)−
83 sin(2 t)− 11 cos(3 t) + 27 sin(3 t)) · hh

y = 0.01 (36 cos(t) + 27 sin(t)− 113 cos(2 t)+

30 sin(2 t) + 11 cos(3 t)− 27 sin(3 t)) · hh
z = 0.01 (45 sin(t)− 30 cos(2 t) + 113 sin(2 t)−

11 cos(3 t) + 27 sin(3 t)) · hh
The Trefoil knot, Figure 8 -, Square - and Granny Knots
displayed by 3D-XplorMath are all harmonic or Fourier
knots. That is they are parametrized using finite Fourier
series for all three coordinates. The particular parametriza-
tions are taken from the 1995 PhD thesis of Aaron Traut-
wein at The University of Iowa.

Compare the rotation of the Frenet frame along this trefoil
knot (defined with harmonic polynomials) and along the
trefoil that results when you select Torus Knot with the
parameters (dd=3, ee=2): Near the points on the torus
knot where the curvature is very small, the rotation speed
of the Frenet frame is large. - The Trefoil Knot can be
shown with a Satellite Knot, default dd = 55, ee = 2.

In stereo mode a Möbius band bounded by the Trefoil Knot
is added. Their handedness depends on the sign of hh.
R.S.P.
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Figure 8 Knot, Granny Knot, Square Knot *

The Trefoil knot, Figure 8 Knot, Granny Knot, Square
Knot, displayed by 3D-XplorMath are all harmonic or Fou-
rier knots. That is they are parametrized using finite
Fourier series for all three coordinates. The particular
parametrizations are taken from the 1995 PhD thesis of
Aaron Trautwein at The University of Iowa.
Satellite Knots can be added in the Action Menu to these
four knots.

The Figure 8 Knot is an alternating prime knot with min-
imal crossing number 4. It is the next simplest knot af-
ter the Trefoil Knot (see Morph Through Prime Knots
31, 41, 52, 6172 ).
Parametric formulas for the Figure 8 Knot:

x =(32 cos(t)− 51 sin(t)− 104 cos(2t)− 34 sin(2t)+

104 cos(3t)− 91 sin(3t))/100

y =(94 cos(t) + 41 sin(t) + 113 cos(2t)− 68 cos(3t)−
124 sin(3t))/140

z =(16 sin(t) + 138 cos(2t)− 39 sin(2t)− 99 cos(3t)−
21 sin(3t))/70

The Granny Knot and the Square Knot are not prime,
both are sums of two Trefoil Knots. The Square Knot has
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a mirror symmetry so that one Trefoil is left handed the
other right handed. The Granny Knot is the sum of two
same-handed Trefoil Knots.

Parametric formulas for the Granny Knot:

x =(−22 cos(t)− 128 sin(t)− 44 cos(3t)− 78 sin(3t))/80

y =(−10 cos(2t)− 27 sin(2t) + 38 cos(4t) + 46 sin(4t))/80

z =(70 cos(3t)− 40 sin(3t))/100

Parametric formulas for the Square Knot:

x =(−22 cos(t)− 128 sin(t)− 44 cos(3t)− 78 sin(3t))/100

y =(11 cos(t)− 43 sin(3t) + 34 cos(5t)− 39 sin(5t))/100

z =(70 cos(3t)− 40 sin(3t) + 18 cos(5t)− 9 sin(5t))/100

R.S.P. Space Curve TOC



Morph Through Five Prime Knots *

A prime knot is a knot that cannot be written as the knot
sum of smaller knots. For example, the Square Knot and
the Granny Knot are not prime since each is a sum of two
Trefoil Knots. There are 14 prime knots with at most
7 minimal number of crossings. They have been hand
drawn so often that they have assumed an esthetically de-
fined standard shape. Of these first 14 prime knots the
following ones are in a morphing family, the prime knots
31, 41, 52, 61, 72. Choose dd = 3 and 0 ≤ ff ≤ 4.3 in Set
Morphing and the program will deform the Trefoil Knot
through the following images:

If one chooses dd = 5 and 0 ≤ ff ≤ 2.3 in Set Mor-
phing then the program will deform the (5,2)-Torus Knot
through the following images of the prime knots 51, 62, 75

The prime knot 74 is the default Lissajous space curve.

There are 249 prime knots with at most 10 minimal num-
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ber of crossings. One can visualize those via the Space
Curves Menu entry: V.Jones Braid List.
The notion of prime knot is important because Horst Schu-
bert proved that the decomposition of a knot as knot sum
(= connected sum) of prime knots is unique. The knot
invariants are a good way to check whether a given knot
is a prime knot.
There is an easy sufficient criterion that guarantees that
the knot under consideration cannot be drawn with fewer
crossings. First we define alternating and reduced alternat-
ing knots: if the thread of the knot passes alternatingly
through overcrossings and undercrossings then the knot is
called alternating. For example, if we twist a circle into a
figure 8 we obtain an alternating trivial knot. In this case
we observe an easily recognizable property of the crossing
in the knot diagram: if the crossing is removed the knot di-
agram decomposes into two components. A crossing with
this property is called an isthmus. Clearly, one can rotate
one component of the knot diagram through 180 degrees,
i.e. untwist and thereby remove the isthmus to obtain a
representation with fewer crossings. An alternating knot
without an isthmus is called a reduced alternating knot.

Theorem : Reduced alternating knots cannot be repre-
sented with fewer crossings, they are always non-trivial.

All prime knots with at most 7 crossings are reduced al-
ternating knots.
H.K. Space Curve TOC



Lissajous Curves, e.g. the Prime Knot 74 *

Lissajous curves are a popular family of planar curves,
resp. space curves. They are complicated enough to be
interesting, but regular enough to be esthetically pleasing.
They are described by simple formulas:

x(t) := aa · sin(2π · dd · t)
y(t) := bb · sin(2π · ee · t+ gg)
z(t) := aa · sin(2π · ff · t+ cc)

In 3DXM the parameters dd, ee, ff are rounded to inte-
gers so that the curves are closed on the interval [0, 1].
The default morph varies the phase gg from 0 to π/2. –
The Lissajous curves are also physically interesting, they
describe the joint motion of orthogonal uncoupled oscilla-
tors (x(t), y(t), z(t)) with different frequencies.
A prime knot is not a knot sum of smaller knots. E.g.
Square Knot and Granny Knot are not prime: each is a
sum of two Trefoil Knots. There are 14 prime knots with
the minimal number of crossings ≤ 7, see the documenta-
tion About This Object for V.Jones Braid List. The
4th 7-crossings-knot, the prime knot 74, is our default Lis-
sajous space curve, (dd, ee, ff, gg) = (2, 3, 7, π/2). – Other
alternating examples are: (dd, ee, ff) = (2, 5, 13), (4, 3, 23):
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There are 249 prime knots with at most 10 minimal num-
ber of crossings. One can visualize those via the Space
Curves Menu entry: V.Jones Braid List.
The notion of prime knot is important because Horst Schu-
bert proved that the decomposition of a knot as knot sum
(= connected sum) of prime knots is unique. The knot
invariants are a good way to check whether a given knot
is a prime knot. There is no more elementary criterion to
recognize a knot as prime.

There is an easy sufficient criterion that guarantees that
the knot under consideration cannot be drawn with fewer
crossings. First we define alternating and reduced alter-
nating knots: if the thread of the knot passes alternatingly
through overcrossings and undercrossings then the knots is
called alternating. For example, if we twist a circle into a
figure 8 we obtain an alternating trivial knot. In this case
we observe an easily recognizable property of the crossing
in the knot diagram: if the crossing is removed the knot di-
agram decomposes into two components. A crossing with
this property is called an isthmus. Clearly, one can always
rotate one component of the knot diagram through 180 de-
grees, untwist and thereby remove the isthmus to obtain a
representation with one less crossings. An alternating knot
without an isthmus is called a reduced alternating knot.

Theorem : Reduced alternating knots cannot be repre-
sented with fewer crossings, they are always non-trivial.

H.K. Space Curve TOC



Braid List Of Prime Knots *

A prime knot is a knot that cannot be written as the knot
sum of smaller knots. For example, the Square Knot and
the Granny Knot are not prime since each is a sum of two
Trefoil Knots. There are 249 prime knots with at most 10
minimal number of crossings. In 3DXM we use the braid
representation of knots. Vaughn Jones gave this list to
one of us in the 80s. The usual hand drawn versions are
prettier than the braids:

Copied from the article ’Prime Knot’ in Wikipedia.
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The above first 14 prime knots are all so called alternating
knots: if one follows the thread of the knot then one passes
– alternatingly(!) – overcrossings and undercrossings. A
knot that is represented as a “reduced” alternating knot
cannot be drawn with fewer crossings, in particular: a re-
duced alternating knot is always non-trivial. If one twists
a circle to a figure 8 then one obtains a non-reduced al-
ternating knot that is clearly trivial. Similarly, one can
take the alternating Granny Knot in 3DXM and turn one
of the Trefoil parts 180 degrees around the horizontal axis.
One obtains an alternating knot with an additional cross-
ing in the middle. Again, this knot is not reduced because
by cutting out the new crossing the knot diagram decom-
poses into two components. Such an easily recognizable
crossing is called an isthmus. One can always untwist an
isthmus and obtain a knot with one less crossing. A knot
diagram without an isthmus is called reduced.

The notion of prime knot is important because Horst Schu-
bert proved that the decomposition of a knot as knot sum
(= connected sum) of prime knots is unique.
All torus knots are prime knots. The genus 2 knots in
3DXM are sums of two torus knots.

The space curve ”Morph Prime Knots 5 4 3” has a default
morph that runs through the prime knots 3.1, 4.1, 5.2, 6.1,
7.2. If one changes dd from 3 to 5 then the ff-morph runs
through 5.1, 6.2, 7.5. The prime knot 7.4 is shown as a
Lissajous knot.

H.K. Space Curve TOC



The Intersection of Two Cylinders *

The image shows the space curve defined implicitly as the
intersection of the two cylinders:

y2 + z2 = ff

and
(cos(aa)x+ sin(aa)y)2 + (z − cc)2 = gg.

These two cylinders are made visible by displaying a ran-
dom set of dots on each of them. In the Action Menu one
can choose to put more random dots on the boundary of
the intersection of the two solid cylinders.

In the default settings the two cylinders touch and the
default morph rotates one of them by changing aa.

We find it interesting to change the radius of the smaller
cylinder while the cylinders keep touching: morph gg up
to ff while keeping dd = 0, since we compute (behind the
user)

cc =
√
ff −√gg + dd.

At gg = ff the intersection curve degenerates into two
ellipses (for each aa).

The distance between the tangent planes of the two cylin-
ders (at their common normal) is dd.

H.K.
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Userdefined Implicit Space Curves *

The exhibit shows the intersection curve of two surfaces,
given by equations F1(x, y, z) = ff, F2(x, y, z) = gg.
To see also the surfaces (as dotted point clouds) choose the
corresponding entry in the Action Menu.
The initial dialogue offers three different defaults for the
surfaces given by F1, F2:
1.) A conic and a plane with the default morph tilting the
plane.
2.) The graph of a function R3 7→ R and a cylinder. This
exhibit can be used to explain extrema under side condi-
tions.
3.) A torus and a tangent plane. This is an example
where the intersection has double point singularities at
those points where the intersection of the surfaces is not
transversal.

By varying these defaults one can create a rich collection
of space curves. (The number of points in the point clouds
cannot be changed in this exhibit.)
Note that the surfaces are only computed inside a sphere
of radius ORB around the origin. This parameter can be
set in the first entry of the Settings Menu.

H.K.
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About Spherical Curves *

In many ways there is a close analogy between planar Eu-
clidean geometry and two-dimensional spherical geometry.
In the ATO for Spherical Ellipses we translate the sum-of-
distances definition from the plane to the sphere and use
the same arguments as in the plane to construct points and
tangents of the curve. Similarly, in the ATOs about Spheri-
cal Cycloids, we roll spherical circles along spherical circles.
See also Spherical Lemniscates. Such analogies of course
require basic notions which correspond to each other.

Lines and Triangles

Straight lines in the plane are the shortest connections be-
tween their points. On the sphere the shortest connec-
tions are great circle arcs that are not longer than half
way around. A line cuts the plane into two congruent
half-planes that are interchanged by the reflection in the
line. Similarly, the sphere is cut by the plane of a great
circle into two congruent half-spheres, and the reflection in
the plane interchanges these two half-spheres. Therefore
we speak of the reflection (of the sphere) in a great circle.
These analogies are enough to translate the planar notion
straight line to the spherical notion great circle. Three
points A,B,C and three shortest connections of lengths
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a, b, c make a triangle — in the plane or on the sphere.
The angles at the points (or vertices) are denoted α, β, γ.
For the plane, the basic triangle formulas are close to the
definition of sine and cosine:

c = a · cosβ + b · cosαProjection theorem:

b · sinα = hc = a · sinβSine theorem:

c2 = a2 + b2 − 2ab cos γCosine theorem:

Note that the more complicated third formula follows from
the first two: Use the Sine theorem in the form 0 = b ·
sinα− a · sinβ and add the square of this to the square of
the Projection theorem. Simplify with cos2 + sin2 = 1 and
use the trigonometric identity cosα cosβ − sinα sinβ =
cos(α + β) = cos(π − γ) = − cos(γ) to obtain the Cosine
theorem.

To derive similar formulas for spherical triangles, use ge-
ographic coordinates on the standard unit sphere, with
the polar center at the north pole C := (0, 0, 1). A point
A at spherical distance b from C satisfies 〈A,C〉 = cos b.
Thus, after rotation into the x-z-plane, it has coordinates
A := (sin b, 0, cos b). A third point B at distance a from the
pole C and such that the angle ∠ACB equals γ has spher-
ical polar coordinates B := (sin a cos γ, sin a sin γ, cos a).
The spherical cosine formula follows by taking a scalar
product:
〈A,B〉 = cos c = cos a cos b+ sin a sin b cos γ.



The name is justified since a Taylor approximation up to
second order gives the corresponding formula for the plane.

For more details: note that the graph of the function
x→ cosx lies above the graph of the quadratic func-
tion x→ 1− x2/2 and not above any wider parabola
x → 1 − x2/(2 + ε). Therefore 1 − x2/2 is called the
quadratic Taylor approximation of cos near x = 0. We
substitute this approximation for x = a, x = b, x = c,
and similarly sinx ≈ x, in the spherical cosine formula
and obtain:
cos c ≈ 1 − c2/2 ≈ (1 − a2/2)(1 − b2/2) + ab cos γ, or
c2 ≈ a2 + b2 − 2ab cos γ, which is the planar formula.

For a more systematic derivation we use the reflection R
which interchanges C,A and observe that R(B) has the co-
ordinates R(B) := (sin c cosα, sin c sinα, cos c). But R(B)
can also be computed from the reflection matrix and the
coordinates of B. Equating the two expressions gives three
formulas between a, b, γ on one side and c, α on the other
side. Of course these formulas hold for any permutation of
A,B,C:− cos b 0 sin b

0 1 0
sin b 0 cos b

 ·
 sin a cos γ

sin a sin γ
cos a

 =

− sin a cos b cos γ + cos a sin b
sin a sin γ

cos a cos b+ sin a sin b cos γ

 =

 sin c cosα
sin c sinα

cos c


.

We use for these formulas the same names as in the planar



case since an even simpler Taylor approximation simplifies
also the first two equations to their planar counterparts:

sin c cosα =Projection theorem:

− sin a cos b cos γ + cos a sin b

sin c · sinα = sin a · sin γSine theorem:

cos c = cos a cos b+ sin a sin b cos γ.Cosine thm:

A consequence of the first two theorems is the

Angle cosine: cos γ = − cosα cosβ + sinα sinβ cos c.

Application: Platonic Polyhedra

Two-dimensional spherical geometry captures certain as-
pects of three-dimensional Euclidean geometry. For ex-
ample, if we project an icosahedron from its center to its
circumsphere then the 20 triangular faces of the icosahe-
dron are mapped to a tessellation of S2 by 20 equilateral
triangles whose angles are 72◦ because five triangles meet
at every vertex. From the angle cosine theorem we read
off the edge-length σ of these triangles, with α = 2π/5 we
have for the

Icosahedron: (cosα+ cos2 α)/ sin2 α = cosσ.
Given the above spherical tools this is a conceptually very
simple construction.

Osculating Circles

At every point of a twice differentiable curve c on S2 one
can determine its osculating circle: the parametrized cir-
cle that agrees with c up to the second derivative at that



point. While it is easy to place a ruler next to a curve
so that the ruler approximates a tangent line, one cannot
so easily guess these best approximating circles. For all
planar curves and space curves in 3DXM one can choose
Osculating Circles from the Action Menu and one can be-
lieve that the resulting images show best approximating
circles. In the case of spherical curves one observes that
these osculating circles actually lie on the sphere. To un-
derstand this, consider the usual osculating circle in R3

and intersect its plane, the osculating plane of the curve c,
with S2; this intersection circle is clearly a better approx-
imation of the curve than any other circle in this plane
and therefore it is the osculating circle. Although we can-
not yet describe the curvature of a curve by a real valued
function, we can already agree that, at each point, a space
curve is curved as strongly as its osculating circle. We call
the spherical radii of these circles the spherical curvature
radii and we are ready to translate geometric constructions
(with curves) from the plane to the sphere.

Parallel curves of a spherical curve c on S2. We define
η(t) := ċ(t)× c(t)/|ċ(t)| as the oriented spherical unit nor-
mal of c. The parallel curve at spherical distance ε is then
in complete analogy with the plane given as

Parallel Curves on S2 : cε(t) := cos ε · c(t) + sin ε · η(t).

It is easy to check that the curvature radii of cε are ob-
tained by adding ε to the curvature radii of c — which is
what our intuition expects of parallel curves.



Spherical Evolvents (also called involutes). For a physical
realization of an evolvent attach a string segment to the
curve and move the end point so that the string is always
tangent to the curve, in the forward or in the backward
direction. The Euclidean formula for the backwards evol-
vent is (assuming |ċ(t)| = 1)

e(t) := c(t)− (t− t0) · ċ(t), t ≥ t0.
A remarkable property of the evolvent is that t − t0 is its
curvature radius at e(t).
We translate this construction to the sphere. The formula
for the spherical evolvent is (assume again |ċ(t)| = 1)

e(t) := cos(t− t0) · c(t)− sin(t− t0) · ċ(t).
A short computation shows that the spherical curvature
radius at e(t) is t− t0, as in the plane. Also, it is true for
the plane and for the sphere that the segment from c(t) to
e(t) is orthogonal to ė(t), i.e., this segment is the curvature
radius of the evolvent at e(t).
Spherical Evolutes. For any given (planar or) spherical
curve c we call the curve of the (planar or) spherical mid-
points of the osculating circles of c the (planar or) spherical
evolute of c. In 3DXM this can best be seen in the demo for
Spherical Ellipses. In the previous paragraph we have seen
that, in the plane and on the sphere, the evolvent of the
evolute of c is this given curve c. Thus, the natural trans-
lations of notions from the plane to the sphere continue to
have natural properties.

What is Curvature?

More precisely, what real number should measure the size



of the curvature at one point of the curve c, and which real
valued function should describe the curvatures of c? For
the plane, differential geometers have agreed to take the ro-
tation speed of a unit normal of c as the quantitative size of
its curvature. For example, the rotation speed of the unit
normal n of a circle of radius r (use arc length parametriza-
tion) is 1/r, since c(t) = r · (cos(t/r), sin(t/r)), |ċ(t)| = 1
and n(t) = (cos(t/r), sin(t/r)), hence ṅ(t) = (1/r) · ċ(t).
Although this is a good reason for taking 1/r as the cur-
vature of a circle of radius r in the plane, the argument
does not carry over to S2, since: What is the spherical ro-
tation speed of the spherical normal? Of course we could
also call on the sphere 1/curvature radius the curvature
of the curve. This is not a good idea on S2 since circles of
radius π/2 are great circles, i.e., shortest connections, and
we would expect them to have curvature 0. Fortunately,
there is for the plane another good reason for taking 1/r
as “the” curvature, and this time the corresponding com-
putation can be repeated on S2. If we imagine a family of
parallel curves then it looks as if the length grows faster if
the curvature is larger.

We can make this intuition more precise with a computa-
tion. First, in the plane:

cε(t) := c(t) + ε · n(t), {ċ(t), n(t)} orthonormal

ċε(t) = ċ(t) + ε · ṅ(t), ṅ(t) = κ(t) · ċ(t)
d

dε
|ċε(t)|ε=0/|ċ(t)| = κ(t).



Here, the second line defines the curvature as the rota-
tion speed of the normal and the third line says that this
curvature function can also be computed as the change of
length of tangent vectors in a parallel family of curves. Of
course we can do the same computation as in line three for
spherical curves:

cε(t) := cos ε · c(t) + sin ε · η(t)

ċε(t) = cos ε · ċ(t) + sin ε · η̇(t)

η̇(t) = c̈(t)× c(t)
|ċε(t)|/|ċ(t)| = 〈ċε(t), ċ(t)〉/〈ċ(t), ċ(t)〉 =

cos ε+ sin ε〈η̇(t), ċ(t)〉/〈ċ(t), ċ(t)〉
d

dε
|ċε(t)|ε=0/|ċ(t)| = −〈η(t), c̈(t)〉/〈ċ(t), ċ(t)〉.

Before we take this as the definition of spherical curvature
for spherical curves we check which function of the radius
we get for circles of spherical radius r:

cr(t) = (sin r cos t, sin r sin t, cos r)

η(t) =
d

dr
cr(t) = (cos r cos t, cos r sin t,− sin r)

c̈r(t) = −(sin r cos t, sin r sin t, 0), finally:

− 〈η(t), c̈(t)〉/〈ċ(t), ċ(t)〉 =
sin r cos r

sin2 r
= cot r.

This is a satisfying answer, since cot r behaves like 1/r for
small r and cot(r = π/2) = 0 as we expect for great circles.



Now we are ready for the definition and we remark that the
historical name is geodesic curvature, not the more naive
spherical curvature which we used above.
Definition. The geodesic curvature κg(t) of a spherical
curve c(t) with spherical unit normal η(t) is

κg(t) := −〈η(t), c̈(t)〉/〈ċ(t), ċ(t)〉.

The Spherical Frenet Equation

Finally we observe that for a unit speed spherical curve c
we have the following natural orthonormal frame along the
curve:

(e1(t), e2(t), e3(t)) := (ċ(t), c(t), η(t)),

and the geodesic curvature controls the derivative of this
frame via the following spherical Frenet equation:

d

dt
ċ(t) = −1 · c(t)− κg(t) · η(t)

d

dt
c(t) = +1 · ċ(t)

d

dt
η(t) = +κg(t) · ċ(t)

Observe that the coefficient matrix 0 −1 −κg
1 0 0
κg 0 0





is skew symmetric. This fact implies that any solution
(e(t), f(t), g(t)) with orthonormal initial conditions stays
orthonormal. This says that t → f(t) is a spherical curve
parametrized by arclength (namely: |ḟ(t)| = |e(t)| = 1).
Moreover g(t) is orthogonal to f(t), ḟ(t) and therefore the
spherical unit normal of f . The third Frenet equation says
that the given function κg(t) (because of ġ(t) = κg(t) ·e(t))
is indeed the geodesic curvature of the curve t → f(t): to
any given κg(t) we have found a curve with that geodesic
curvature.
We repeat: from elementary distance and triangle geo-
metry to the differential geometry of curves we have ex-
plained a very close analogy between the Euclidean plane
and the sphere. The 3DXM demos try to emphasize this, in
particular Spherical Ellipses, Spherical Cycloids, Spher-
ical Lemniscates.

HK. Space Curve TOC



Loxodrome *

A Loxodrome (or “rhumb line”) is a route that a boat
would take if it kept a constant compass heading (so that
on a Mercator projection it is simply a straight line). To
be more formal, a loxodrome is a path on the unit sphere
S2 ⊂ R3 that makes a constant angle with the great circles
of longitude (“meridians”). Recall that a Logarithmic
Spiral in the (complex) plane C makes a constant angle
with the rays through the origin. Stereographic Projection
St: C 7→ S2 unites these two facts: It maps the radial lines
in C to the meridians on S2 and it is also angle preserv-
ing (“conformal”). The logarithmic spirals - which meet
the radial lines in C under constant angles - are therefore
mapped by stereographic projection to the loxodromes on
S2 - which meet the meridians under constant angles.
On the other hand, the complex Exponential Map exp :
C 7→ C is also conformal and it maps the lines parallel to
the real axis to the radial lines in C and all other straight
lines to curves which meet the radial lines under constant
angles, i.e. the logarithmic spirals. These are therefore
parametrized as c(t) = exp((1 + i · aa) · t+ const) and the
loxodromes on the sphere are given parametrically as

t 7→ St(exp((1 + i · aa) · t+ const)).

1: Their osculating circles all lie on the sphere. And 2: the
Mercator map from the sphere is: exp−1 ◦ St−1 : S2 7→ C.

R.S.P.

* This file is from the 3D-XplorMath project. Please see:
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The Viviani Curve *

The Viviani curve is the intersection of a sphere of radius
2 · aa and a cylinder of radius aa that touch at a single
point, the double point of the curve. Parametric formulas
for it are:

z = aa (1 + cos(t)) = aa 2 cos(t/2)2,

y = aa sin(t) = aa 2 sin(t/2) cos(t/2), and

x = aa 2 sin(t/2)

Implicit equations for the two intersecting surfaces are:

x2 + y2 + z2 = 4 aa2, a sphere of radius 2 aa,

(z − aa− bb)2 + y2 = aa2, a cylinder of radius aa.

The planar projections of this curve are therefore in gen-
eral curves of degree 4, but because of its symmetries the
Viviani curve has two orthogonal two-to-one projections
that are simpler; namely curves of degree 2. Indeed pro-
jecting it to the y-z-plane we get a twice covered circle (use
Settings Menu: Set Viewpoint and Up Direction 200,0,0),
projecting to the x-z-plane gives a twice covered parabolic
piece, (1− z/(2aa)) = (x/(2aa))2, while the projection to
the x-y-plane is the degree 4 figure 8 with the equation (for
aa = 1/2): x2 − y2 = x4.
Note that the osculating circles lie on the sphere.
R.S.P.

* This file is from the 3D-XplorMath project. Please see:
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About Spherical Cycloids *

See also the ATOs for Spherical Ellipses and for
Planar Rolling Curves, e.g. Astroid, Cardioid

Spherical Definition
( in analogy to planar case)

The spherical ellipses demonstrated already how defini-
tions from planar Euclidean geometry can be repeated on
the sphere; the demo illustrates that also spherical evolutes
are analogous to the planar ones. Rolling curves, spheri-
cal cycloids, provide more such examples: simply let one
spherical circle roll (on the inside or the outside) along an-
other spherical circle. Here roll means that the arclengths
(= angle at the center times sine of the spherical radius)
of corresponding arcs of the two circles agree. The true
rolling curves are obtained by looking at the curve traced
out by one point of the rolling circle, but, just as in the
plane, one may also look at the traces of other points on a
fixed radius, inside or outside the rolling circle — choose
bb different from 1 in the Settings Menu, Set Parameters
Dialog.

The rolling construction is illustrated by choosing Show
Rolling Circle in the Action Menu.

* This file is from the 3D-XplorMath project. Please see:
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Rolling curves have a very simple tangent construction.
The point of the rolling circle which is in contact with
the base curve has velocity zero – just watch cars going
by. This means that the connecting segment (which is a
piece of a great circle of the sphere) from this point of
contact of the wheel to the endpoint of the (great circle)
drawing stick is the (great circle) radius of the momentary
rotation. The tangent of the curve drawn by the draw-
ing stick is therefore orthogonal to this momentary radius.
The 3DXM-demo draws the rolling curve and shows its
tangents.
One can observe, for all spherical curves (in 3DXM: Vi-
viani Curve (Intersect Sphere and Cylinder), Loxodromes
(Constant Angle with Meridians), Spherical Ellipses, Spher-
ical Cycloids, Spherical Lemniscates), that the osculating
circles lie on the sphere of the spherical curve by choos-
ing Show Osculating Circle in the Action Menu. To un-
derstand this, note, that the osculating circle lies in the
osculating plane (Action Menu!) and, of course, no circle
in a given osculating plane can be a better approximation
of the curve than the intersection of this plane with the
sphere on which the curve lies.

H.K. Space Curve TOC



About Spherical Lemniscates*

See ATOs for Spherical Ellipses, Planar Lemniscate

The spherical definition is completely analogous to the pla-
nar case. The curves are traced by a mechanical draw-
ing mechanism. It consists of three great circle rods, two
shorter ones of (spherical) length ρ = cc and a longer one
of length λ = 2 · dd (drawn red in the figure). The shorter
ones have one endpoint each at ‘focal’ points F1, F2, around
which they can rotate. The longer great circle rod connects
the two shorter ones, thus creating a mechanism with one
degree of freedom: If one of the short rods rotates with con-
stant angular velocity, then the connecting long rod forces
the other short rod to rotate with non-constant angular

* This file is from the 3D-XplorMath project. Please see:
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velocity. – The parameter ff ∈ [0, 1] chooses the drawing
pen on the middle rod and this pen draws the curve.

This demo should be seen as another example of how con-
structions from Euclidean geometry can be repeated in
spherical geometry. See also About Mechanically Gen-

erated Curves from the Documentation Menu of Planar
Curves.

Mechanically generated curves come together with a con-
struction of their tangents! Our drawing mechanism is
anchored with its focal points on a fixed sphere. On this
fixed sphere the drawing takes place. A second moving
sphere (same radius and midpoint as the fixed sphere) is
attached to the drawing part of the mechanical appara-
tus, in the present case attached to the middle rod. One
can imagine that any point of the moving sphere traces a
curve on the fixed sphere! The velocity vectors of these
traced curves give a time-dependent vector field on the
fixed sphere. It is a marvellous theorem that for each fixed
time t the vectors of the time-dependent field are the veloc-
ity vectors of a standard rotation of the sphere. In other
words: For each fixed time t are the integral curves of this
momentary velocity field concentric circles, the orbits of a
standard rotation. The antipodal centers of these circles
are therefore called momentary centers of rotation. Any
point c(t) on one of the traced curves can be connected
(by a great circle) to the antipodal momentary centers of
rotation (drawn blue) and the tangent of the traced curve
at c(t) (also blue) is orthogonal to this momentary radius.



How can one find, for a specific drawing mechanism, these
momentary centers of rotation? Consider the endpoints of
the middle rod of the present mechanism. They are points
of the moving sphere. Since they are also the endpoints
of the two rotating rods, they can only move orthogonally
to their rods. The two rotating rods are therefore always
pointing to the momentary center of rotation. We can find
these centers by intersecting the two great circles on which
the short rods lie (drawn dotted green).
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About Spherical Ellipses *

See ATO for Planar Ellipses

In 3DXplorMath the Default Morph shows a family of
ellipses with fixed focal points F1, F2 as the larger axis aa
varies from its allowed minimum e = bb/2 to its allowed
maximum π − e = π − bb/2. Another interesting morph is
0.11 ≤ aa ≤ 1.43, 0.2 ≤ bb ≤ π − 0.2: the distance of the
focal points increases until they are almost antipodal and
the major axis is only slightly longer than the distance of
the focal points.

Elementary Definition. Many elementary construc-
tions from planar Euclidean geometry have natural ana-
logues on the twodimensional sphere S2. For example, we
can take the definition of planar ellipses and use it on the
sphere as follows: Pick two points F1, F2 ∈ S2 of spheri-
cal distance 2e := dist(F1, F2) < π and define the set of
points P ∈ S2 for which the sum of the distances to the
two points F1, F2 equals a constant =: 2a, i.e. the set:

P ∈ S2; dist(P, F1) + dist(P, F2) = 2a,

to be a Spherical Ellipse.

In the Euclidean plane there is only one restriction between
the parameters of an ellipse: 2e < 2a. Since distances on

* This file is from the 3D-XplorMath project. Please see:
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S2 cannot be larger than π we have two restrictions in
spherical geometry: 2e < 2a < 2π − 2e.

For fixed focal points, i.e. for fixed e, these curves cover
the sphere (we allow that the smallest and the largest el-
lipse degenerate to great circle segments). One observes
that the ellipse with 2a = π is a great circle and that el-
lipses with 2a > π are congruent to ellipses with 2a < π
and focal points −F1,−F2.
This is because dist(P, F ) = π − dist(P,−F ) implies

π < 2a = dist(P, F1) + dist(P, F2)⇒
dist(P,−F1) + dist(P,−F2) = 2π − 2a < π.

Similarly, on the sphere one does not need to distinguish
between ellipses and hyperbolas:

{P ∈ S2; dist(P, F1) + dist(P, F2) = 2a} =

{P ∈ S2; dist(P, F1)− dist(P,−F2) = 2a− π}.

Practical Application. These curves are used since
more than 50 years in the LORAN System to determine
the position of a ship on the ocean as follows. Consider
a pair of radio stations which broadcast synchronized sig-
nals. If one measures at any point P on the earth the time
difference with which a pair of signals from the two stations
arrives, then one knows the difference of the two distances
from P to the radio stations. Therefore sea charts were
prepared which show the curves of constant difference of



the distances to the two radio stations. This has to be
done for several pairs of radio stations. In araes of the
ocean where the families of curves (for at least two pairs
of radio stations) intersect reasonably transversal it is suf-
ficient to measure two time differences, then a look on the
sea chart will show the ship’s position as the intersection
point of two curves, two sperical hyperbolas. On the site
http://webhome.idirect.com/...

˜ jproc/hyperbolic/index.html or

˜ jproc/hyperbolic/lorc−hyperbola.jpg

this is explained by the following map:



Elementary Construction, 3DXM-demo

Begin by drawing a circle of radius 2a around F1 (called
Leitkreis in German). Next, for every point C on this cir-
cle we find a point X on the spherical ellipse as follows:
Let M be the midpoint of the great circle segment from C
to F2 and let T be the great circle through M and perpen-
dicular to that segment. In other words, T is the symme-
try line between C and F2. Finally we intersect T with the
Leitkreis radius from F1 to C in X. — Because we used
the symmetry line T we have dist(X,C) = dist(X,F2) and
therefore:

dist(X,F1) + dist(X,F2) = dist(X,F1) + dist(X,C)

= dist(C,F1) = 2a.

It is easy to prove that the great circle T is tangent to the
ellipse at the pointX.

Connection with Elliptic Functions

We met a family of ellipses all having the same focal points
(’confocal’) and also the orthogonal family of confocal hy-
perbolas in the visualization of the complex function z →
z+ 1/z. In the same way two orthogonal families of confo-
cal spherical ellipses show up in the visualization of Ellip-
tic Functions from rectangular tori to the Riemann sphere
(choose in the Action Menu: Show Image on Riemann
Sphere and in the View Menu: Anaglyph Stereo Vision).
— Note that in the plane all such families of confocal el-
lipses and hyperbolas are essentially the same, they differ



only in scale. On the sphere we get different families for
different rectangular tori, i.e. for different quadrupels of
focal points {F1, F2,−F1,−F2}.

An Equation for the Spherical Ellipse

Abbreviate α := dist(X,F1), β := dist(X,F2). The defi-
nition of a spherical ellipse says:

cos(2a) = cos(α+ β) = cosα cosβ − sinα sinβ.

with cosα = 〈X,F1〉, cosβ = 〈X,F2〉.

We want to write the equation in terms of the scalar prod-
ucts which are linear in X. Therefore we replace sin2 =
1− cos2 to get:

(1− cos2 α)(1− cos2 β) = (cosα cosβ − cos(2a))2

or

1− cos2 α− cos2 β = −2 cos(2a) cosα cosβ + cos2(2a)

or, by replacing the cosines by the scalar products:

sin2(2a)〈X,X〉 − 〈X,F1〉2 − 〈X,F2〉2 =

− 2 cos(2a) · 〈X,F1〉 · 〈X,F2〉.

Observe that this is a homogenous quadratic equation in
X = (x, y, z). In other words: Our spherical ellipse is
the intersection of the unit sphere with a quadratic cone
whose vertex is at the midpoint of the sphere. So we get
the surprisingly simple result: If one projects a spherical



ellipse from the midpoint of the sphere onto some plane
then one obtains a (planar) conic section.
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Space Curves of Constant Curvature on Cylinders*

These Curves are special cases of the ones described in
Space Curves of Constant Curvature on Tori,

but the situation simplifies so much that they deserve spe-
cial attention.

First we roll the plane onto a cylinder of radius R = 1/bb:

F :

(
x

y

)
7→

 x
R cos(y/r)
R sin(y/R)

 .

In the plane we describe a curve by its rotation angle
against the x-axis, α(s) =

∫ s
0
κg(σ)dσ, where κg is the cur-

vature of the plane curve, or its geodesic curvature when
rolled onto the cylinder:

c′(s) :=

(
cos(α(s))

sin(α(s))

)
, c(s) :=

∫ s

0

c′(σ)dσ.

The cylinder has normal curvature 0 in the x-direction and
1/R in the y-direction. The space curvature κ of F ◦ c is
therefore given by

κ2 = sin4(α(s))/R2 + κ2
g(s) = sin4(α(s))/R2 + (α′(s))2.

This is a first order ODE for α(s), if we want κ = const =
dd. The default morph of 3D-XplorMath varies dd.

* This file is from the 3D-XplorMath project. Please see:
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This ODE is harmless, if we look for curves with κ > 1/R:

α′(s) = +

√
κ2 − sin4(α(s))/R2 > 0.

The solution curves are, in the plane, convex curves. They
reach α = π/2 in finite time. They are closed because the
normals at α = 0 and at α = π/2 are lines of reflectional
symmetry.

To discuss curves with κ ≤ 1/R, we differentiate the square
of the ODE and cancel 2α′(s):

α′′(s) = −2 sin3(α(s)) cos(α(s))/R2.

This is a Lipschitz-ODE with unique solutions for any
given initial data.
If we choose κ < 1/R, then the second order ODE forces
α′(s) to change sign when α(s) reaches αmax given by
sin2(αmax) = κ/R < 1. The solution curves oscillate
around a parallel to the x-axis and look a bit like sin-
curves.
If we choose κ = 1/R, then αmax = π/2. We see that
α(s) := π/2 is a solution of the second order ODE. Hence,
any solution which starts with α(0) < π/2 cannot reach
π/2 in finite time, but converges to π/2 asymptotically.
The corresponding curve F ◦ c therefore spirals towards
one of the circle-latitudes of the cylinder - unexpectedly?
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Space Curves of Constant Curvature on Tori *

These are the simplest non-planar closed constant curva-
ture space curves that we have so far met. Their existence
proof depends only on symmetry arguments. Example:

The program 3D-XplorMath allows to switch (in the Ac-
tion Menu) between such curves on three surface fami-
lies with rotation symmetry and equator mirror symme-
try: namely on tori, ellipsoids and cylinders. The merid-
ian curves of the tori and ellipsoids and the cross sections
of the horizontal cylinders are ellipses with vertical axis
cc and horizontal axis bb. The midpoints of these ellipses,
in the torus case, lie on a circle of radius aa (> bb). The

* This file is from the 3D-XplorMath project. Please see:
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cylinders, viewed as limits of the tori, have their lengths
controlled by aa and the rotation symmetry degenerated
to translation symmetry. The ellipsoids are described as
tori with aa = 0.

Space curves of constant curvature k = dd, which lie on
a given surface, can easily be computed via the ODE be-
low, if the desired space curvature is chosen larger than all
the normal curvatures of the surface. (In fact, only those
normal curvatures which the curve meets, do matter.) We
are interested in curves which are symmetric with respect
to the equator plane and with respect to some meridian
plane - such curves are made up of four congruent arcs
and are automatically closed. The initial point is therefore
chosen on the equator and the initial direction is vertical.
The ODE is such that the angle, with which the meridians
are intersected, increases until 90◦ is reached and we have
obtained the quarter piece which gives our closed curve.
One can have the initial point on the inner or the outer
equator of the torus by switching the sign of the parame-
ter bb.
The angle between the initial direction and the vertical
meridian can be set. It is π ∗ ee. All these curves have
selfintersections, but they give some feeling, how constant
curvature space curves wind around on the given surface.
With more care we can allow constant space curvature
which is smaller than the maximum of the normal cur-
vatures of the surface. Below we will find closed ones also
among these. – First we turn to the ODE.



The ODE for Constant Space Curvature

For every tangential unit vector ~v surfaces have a normal
curvature b(~v,~v), where b( , ) is the second fundamental
form of the surface. Here we describe surfaces as the levels
of a function f : R3 7→ R, where the ‘level’ is the set of
points where the function f has the value 0. (This constant
can be changed with the parameter ff .) This description
as a level of f allows to compute the normal curvature as

κn(~v) = 〈d~v grad f, ~v〉/|grad f |.
A curve on the surface with tangent vector ~v will have
space curvature dd at that point if the tangential curvature
(also called geodesic curvature) is

κg(~v) =
√
dd2 − κn(~v)2.

Note that N := grad f/|grad f | is the prefered unit nor-
mal field of the torus. The desired curve on the surface is
therefore determined by the ODE:

c′′(s) = κn(c′(s)) ·N(c(s)) + κg(c
′(s)) · c′(s)×N(c(s)).

Any solution of this ODE with
f(c(0)) = 0 and c′(0) ⊥ grad f(c(0))

stays on the level {f = 0}, i.e. on the given surface, and
is a space curve of constant curvature k = dd.

To force such curves, with simple arguments, to close up
we need to employ symmetries of the surface. Therefore
we use this ODE on surfaces of revolution which, in addi-
tion, have a reflection symmetry orthogonal to the axis of
rotation. The previous argument works on such surfaces.



More Closed Constant Curvature Curves.

The idea is to look for other symmetries of the curves.
Our surfaces allow 180◦ rotations around normals at any
equator point. Such symmetries rotate an arc of positive
geodesic curvature κg into an arc with κg < 0, i.e. we
need κg = 0 where the curve crosses the equator. The
only choice for the space curvature therefore is:

k = dd := ±κn(c′(0)), hence κg := ±
√
dd2 − κ2

n.

We choose κg > 0 above the equator, κg < 0 below it.
Note that on the cylinder there are helices with these ini-
tial conditions. They solve our ODE. On the other hand,
on the torus and on the ellipsoid of revolution the latitudes
have smaller radius than the equator. Angular momentum
conservation therefore requires that the solution curves in-
crease their angle against the meridians. Exactly as in the
simpler case above they turn until they intersect a meridian
orthogonally and then continue reflection symmetric (with
respect to the plane of the meridian). This symmetry im-
plies that they reach the equator again when their geodesic
curvature is zero. Therefore they can cross the equator as
smooth curves and the continuation agrees with the 180◦

normal rotation symmetry! And so on at all further cross-
ings until the solution comes around the surface and to the
vicinity of the initial point. In general it will not close. We
can vary the size of the equator (aa for the torus, bb for the
ellipsoid) until the solution hits the initial point. There, it
is either half a period off or, because of the angular mo-
mentum, it reaches the initial point with the same tangent,



as a smoothly closed curve! This constructs many closed
constant curvature space curves, because we have the pa-
rameters aa, bb, cc, ee to play with. – Numerically we can
use the morphing feature of 3D-XplorMath and appeal to
the intermediate value theorem to find solutions.

Surprisingly, we can find these oscillating curves also on
circular cylinders. We start the integration where we ex-
pect the reflection symmetry: tangential to a straight line
and with geodesic curvature κg(c(0)) ∈ (0,maxκn). For
the solution the angle against the straight lines will in-
crease and the geodesic curvature decrease until it becomes
zero. If we call the straight line through that point equator
of the cylinder, then we have on the cylinder the same kind
of curve that we obtained before on tori and ellipsoids.
In the Action Menu of 3D-XplorMath one can switch be-
tween the described two kinds of symmetries of the curves.



Some Numerical Remarks

The helices on the cylinders show that we should expect
trouble when we try to solve our ODE numerically with
initial value κg(c(0)) = 0. Recall that the Runge-Kutta
method needs to make four first order trial steps before
the high accuracy Runge-Kutta step is obtained as an av-
erage of those four trial steps. These trial steps cannot
always be computed because dd2−κ2

n < 0 at the endpoint
of some trial step. Currently I do not know c′′′(0) for
the theoretically constructed curves (the even derivatives
vanish because of the 180◦ symmetry). Therefore I can-
not construct a numerical method which avoids the above
problem.
Instead I solve a slightly wrong equation by defining a
slightly too large space curvature:

k = dd :=
∣∣κn(c(0), c′(0))

∣∣+ 0.00001.

This error is big enough for Runge-Kutta to proceed and
small enough so that the osculating circles, while drawing
the evolute, show no discontinuity. (The evolute increases
errors of the curve very much.)

Warning: If the selection in the Action Menu is such that
the curves with two orthogonal reflection symmetries are
computed then the user may set the space curvature k = dd
arbitrarily. To avoid crashes caused by square roots of neg-
ative numbers the program computes

√
max(0, dd2 − κ2

n).
The computed curves in such situations are geodesics, not
curves with constant space curvature.
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Space Curves of Constant Curvature *

2 - 11 Torus Knot of
constant curvature.

See also:
About Spherical Curves

Definition via Differential Equations. Space Curves that
3DXM can exhibit are mostly given in terms of explicit for-
mulas or explicit geometric constructions. The differential
geometric treatment of curves starts from such examples
and defines geometric properties, i.e., properties which do
not change when the curve is transformed by an isometry
(= distance preserving map, also called a rigid motion) of
Euclidean space R3. The most important such properties
are the curvature function κ and the torsion function τ .
Once they have been defined one proves the Fundamental
Theorem of Space Curves, which states that for any given
continuous functions κ, τ there is a space curve with these
curvature and torsion functions, and, that this curve is
uniquely determined up to a rigid motion. In 3DXM we
obtain closed constant curvature space curves from:

κ(t) := aa,

τ(t) := bb+ cc · sin(t) + dd · sin(2t) + ee · sin(3t).

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/ Space Curve TOC

http://3D-XplorMath.org/


We recall the definition of curvature and how the ODE
shows up. At each point of a parametrized space curve
c(t) there is a parametrized circle γ(t) with

c(t0) = γ(t0), ċ(t0) = γ̇(t0), c̈(t0) = γ̈(t0).
This circle – which may degenerate to a straight line – is
called the osculating circle at t0, its radius is called cur-
vature radius at t0 and the inverse of the radius is called
the curvature at t0, κ(t0). The computation of curvature
is simpler if the curve is parametrized by arc length, i.e. if
the length of all tangent vectors is one, |ċ(t)| = 1. One
gets κ(t) = |c̈(t)|. Check this for the circle (arclength
parametrization) c(t) := r · (cos(t/r), sin(t/r)). The most
common way to proceed is to assume that κ(t) > 0. This
allows to define the Frenet basis along the curve:

e1(t) := ċ(t),

e2(t) := c̈(t)/κ(t),

e3(t) := e1(t)× e2(t).

The Frenet basis defines three curves t 7→ ej(t) on the
unit sphere. To emphasize the fact that ej(t) are to be
considered as vectors, not as points, one calls the length of
their derivative, |ėj(t)|, angular velocity or rotation speed
and not just velocity. For example, the formula c̈(t) =
κ(t)e2(t) says that κ(t) is the rotation speed of ċ(t). We get
from ė1(t) ∼ e2(t) that the derivative ė3(t) = e1(t)× ė2(t)
is proportional to e2(t). The proportionality factor, the
rotation speed of e3(t), is called the torsion function τ(t)
of the curve c(t). In formulas: τ(t) := 〈ė3(t), e2(t)〉.
Having made these definitions, one can change the point



of view and consider the two functions κ, τ as given. This
turns the equations that were originally definitions of κ
and τ into differential equations for the curve, the famous

Frenet-Serret Equations:

ė1(t) = κ(t) · e2(t),

ė2(t) = −κ(t) · e1(t)− τ(t) · e3(t),

ė3(t) = τ(t) · e2(t),

or, more compactly with the angular velocity vector

~ω(t) := −τ(t) · e1(t) + κ(t) · e3(t),

ėj(t) = ~ω(t)× ej(t), j = 1, 2, 3.

ċ(t) := e1(t).Finally

For given continuous functions κ, τ these differential equa-
tions have — for given orthonormal initial values — unique
orthonormal solutions {e1(t), e2(t), e3(t)}.
The curve c(t) :=

∫ t
e1(s)ds is then parametrized by arc

length and has the given curvature functions κ, τ .

To find closed curves of constant curvature, we employ
symmetries. The simplest case is reflection symmetry in
normal planes of the curve. When crossing such symmetry
planes the torsion, in our case

τ(t) := bb+ cc · sin(t) + dd · sin(2t) + ee · sin(3t),

changes sign and is skew symmetric w.r.t. those points.
Therefore we need bb = 0. The symmetry points then are
at t = n · π, n ∈ Z and all symmetry planes pass through
the intersection line of two neighboring ones. If and only if
the planes intersect in rational angles do the curves close.



Therefore we find many closed curves in any 1-parameter
family (if bb = 0), see e.g. the default morph.
With the τ -function that we chose, there is another type
of symmetry: If we set dd = 0 then τ is even w.r.t. the
parameters t = π/2 + n · π, n ∈ Z and this implies that
180◦ rotation around e2(t) is a symmetry of the curve.
Closed curves with this symmetry can be obtained from the
Action Menu in the Submenu Other Closed Curves. If
one chooses in the Action Menu Add Symmetry Elements

then these normal rotation axes are added to the picture.
The closing condition is easy to see:

(i) The symmetry normals have all to be in the
same plane and therefore all will intersect in one
point. (ii) The intersection angle between two
adjacent normals has to be rational.

For curves with this normal symmetry the parameter bb,
the mean value of the torsion τ , has a very nice property.
To see it, select one of the curves with normal symmetry,
then Add Symmetry Elements. Next go to Set Morphing,
the 2nd entry of the Settings Menu, click the button Init

to Current Parameters and finally increase the upper
morphing bound b1 by about 0.2. Preferably choose one
of the stereo options and start morphing: The symmetry
normals will move apart but remain orthogonal to a com-
mon, helicoidal, symmetry axis.
This regular behavior allowed us to program the morph
bb Keeps SymLines Colinear, the last entry in the Ani-
mate Menu. Start with a closed curve with normal symme-



tries (from the submenu of the Action Menu). In Set Mor-

phing click again the button Init to Current Parame-

ters, but this time increase the upper bound c1 by about
0.2. Click OK and click the last entry in the Animate Menu.
In the resulting deformation the program adjusts the mean
value bb of the torsion in such a way that the symmetry
normals remain collinear!!
This feature allows the user to find other closed curves:
Watch the morph until the symmetry normals appear to
form again a rational angle, stop the morph by clicking
the mouse. The parameters at which you stopped are now
the current parameters. Click Init to Current Param-

eters in Set Morphing and now increase or decrease c1
by about 0.02, do OK and run the last-entry-morph again.
With few such steps the new curve can be visibly closed.
One last time Init to Current Parameters and now do
in the Animate Menu aa, bb Keep Curves closed. This
entry is there to deform closed curves as closed curves, but
in the current use it will improve the visibly closed curve to
being high precision closed. – Some of the closed examples
which the submenu offers, have been obtained with this
method. The last example, the 11-2-knot, needed such a
large value of the mean value bb of τ(t) that the torsion of
this example has no sign changes! It is easier to imagine
examples like 6 helices, which look more as one would
expect: being made up of left winding and right winding
pieces of helices, joined by pieces of circles.
See the tutorial movie on constant curvature space curves



at http://3d-xplormath.org/Movies/index.html

Do not miss to select Show Osculating Circles & Evo-

lute. The constant radius of the osculating circles shows
the constant curvature and the rotating motion of the ra-
dius shows size and sign of the torsion.

In 3DXM one can choose in the Action Menu Parallel

Frame. This frame is designed to rotate as little as possible
along the curve, in R3. This property is more obvious when
one looks at the torus knots than at the constant curvature
curves. For further details see curves of constant torsion.
The main advantage of these parallel frames is that they
neither make it neccessary to assume more than continuity
of the second derivative c̈, nor that κ > 0 everywhere, even
straight lines are not exceptional curves if one works with
these frames. Their differential equation is also simple:

Frenet-Serret Equations for Parallel Frames:

ė1(t) := a(t) · e2(t) + b(t) · e3(t),

ė2(t) := −a(t) · e1(t),

ė3(t) := −b(t) · e1(t).

With an antiderivative T (t) of the torsion τ(t) = T ′(t) we
can of course write the twodimensional curvature vector
(a(t), b(t)) in terms of κ(t), τ(t), namely:

(a(t), b(t)) := κ(t) ·
(

cos(T (t)), sin(T (t))
)
.

H.K. Space Curve TOC



About Space Curves of Constant Torsion *

See: About Closed Space Curves of Constant Curvature

Definition via Differential Equations

Most Space Curves that 3DXM can exhibit are given in
terms of explicit formulas or explicit geometric construc-
tions. In “About Space Curves of Constant Curvature”
we explain how curvature and torsion of a space curve
are defined. The definition immediately translates into a
construction of the curve from curvature and torsion via
the following differential equations, the famous

Frenet-Serret Equations:

ė1(t) := κ(t) · e2(t),

ė2(t) := −κ(t) · e1(t)− τ(t) · e3(t),

ė3(t) := τ(t) · e2(t).

For given continuous functions κ, τ these differential equa-
tions have — for given orthonormal initial values — unique
orthonormal solutions {e1(t), e2(t), e3(t)}. The curve c(t) :=∫ t
e1(s)ds is then parametrized by arc length and has the

given curvature functions κ, τ .

The simplest curves in the plane are straight lines and cir-
cles, curves of constant curvature. It is therefore natural to
discuss also space curves of constant curvature. In 3DXM
we illustrate these by finding closed examples in the fol-
lowing family:

* This file is from the 3D-XplorMath project. Please see:
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κ(t) := aa,
τ(t) := bb+ cc · sin(t) + dd · sin(2t) + ee · sin(3t).

To understand the Frenet-Serret equations better one can
also study other special cases. Experimentation shows that
the following curves of constant torsion

κ(t) := bb+ cc · cos(ff · t) + dd · cos(2ff · t)+
ee · cos(3ff · t)

τ(t) = aa
have an amusingly strong change of shape as one changes
the parameters. Again we look for closed examples with
the help of symmetries. Note that 180◦ rotations around
the principal normals e2(t) at t/ff = kπ, k ∈ Z are isome-
tries of the curves. At t/ff = π/2 + kπ, k ∈ Z the 180◦

rotations around the other normal vector of the frame,
e3(t), are also isometries of the space curve. This allows
us to formulate the closing condition:
If the normals e2(0) at c(0), e3(π ·ff/2) at c(π ·ff/2) in-
tersect and if their angle is a rational multiple of π then
the space curve closes up. Numerically one can use the
parameter cc to keep the angle constant, e.g. at π/3, π/4,
and then use aa to let the normals intersect. There are
many closed solutions. Typically they look like a collec-
tion of bed springs which are joint by fairly straight pieces.
If one allows these bed springs to have many turns then
the closing values of aa and cc are almost equidistant. The
default morph of 3DXM shows this, it contains two closed
and three approximately closed curves which are made of
three bed springs with an increasing number of turns. It is



easy to extend this family to springs with more turns, but
one can also find all the small values, down to just one half
turn for each spring. — We found no closed curves made
of only two springs.
Here is a list of numerically closed curves:

Curves with 3-fold symmetry, ff = 0.208,

aa, 0.178632213, 0.284031845, 0.417033334,
cc, 0.2874008, 0.90658882, 2.19234962,
aa, 0.513441035, 0.59263462, 0.628044,
cc, 3.489480574, 4.7901189, 5.4411264,
aa, 0.661324546, 0.69281176, 0.7227614
cc, 6.09244336, 6.7440016, 7.39575343

Curves with 4-fold symmetry, ff = 0.23,

aa, 0.2137654757, 0.3704887, 0.479019355,
cc, 0.234123448, 0.89640923, 1.59595534,
aa, 0.56642393, 0.6414483533, 0.7081321561,
cc, 2.30473675, 3.01756515691, 3.732639742,
aa, 0.76871766, 0.8246012, 0.87671763
cc, 4.449136, 5.1666082, 5.8847911

Curve with 5-fold symmetry, ff = 0.2324,
aa = 0.73855871446286, cc = 2.96466
If ones does not begin with the differential equation but
starts from the curve, then one cannot define the torsion
at points where the curvature vanishes. This problem is
caused by the use of the Frenet frame. Another frame
is suggested by a mechanical consideration: If a massive
sphere would move along the space curve (imagine the



space curve as a wire and the sphere with a hole through
which the wire slides without friction) then inertia would
make the sphere avoid unnecessary rotations around the
wire. In other words: A frame which is attached to the
sphere so that it is normal to the wire remains normal
and the derivatives of the normal vectors have no nor-
mal components. Such frames are called “parallel as nor-
mal vectors”, or simply “parallel frames”. In 3DXM one
can choose Parallel Frame in the Action Menu . Now
Show Curve as Tube illustrates the behaviour of the cho-
sen frame. In particular the torus knots show how the
parallel frames avoid “unnecessary” rotations which the
Frenet frames must make.
An advantage of such parallel frames is that they neither
require to assume more than two continuous derivatives of
the curve nor that κ never vanishes—even straight lines
are not exceptional curves if one works with these frames.
Let φ(t) be an antiderivative of the torsion function, i.e.,
φ̇(t) = τ(t). Then the differential equation that determines
this frame has the following simple form:

Frenet-Serret Equations for Parallel Frames:

ė1(t) := κ(t) cos(φ(t)) · e2(t) + κ(t) sin(φ(t)) · e3(t)

ė2(t) := −κ(t) cos(φ(t)) · e1(t)

ė3(t) := −κ(t) sin(φ(t)) · e1(t).

H.K. Space Curve TOC



Free Rotational Motion of Rigid Bodies *

Part I: Angular Velocity and Rigid Motion

In this first part we will not yet consider solid objects with
their inertial properties, but only so-called rigid body kine-
matics, i.e., the study of rotational motions of space. The
(simpler) particle mechanics analogue of the question that
we will discuss is the following: knowing the velocity curve
v(t) of a point how can we reconstruct the travel path c(t)?
Since c′(t) = v(t), c(t) is an antiderivative of v(t) and we
can find it easily by integration. (Historically v(t) was
called the hodograph of the motion.)

Things to try in 3D-XplorMath

The last three entries of the Action Menu of Space Curves
show demos that illustrate the present discussion. The
first of these Actions, Use Curve as Hodograph, interpretes
the space curves of 3D-XplorMath as velocity curves of a
particle and reconstructs the path. The demo emphasizes
that the tangent vector of the constructed path is (paral-
lel to) the position vector of the selected space curve, the
hodograph.
The second of these Actions, Use Curve as Angular Ve-
locity ~ω(t), reconstructs the rotational motion which has
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the given space curve as given angular velocity function.
The visualization of the motion uses a sphere with random
dots and shows several consecutive points of the orbit of
each random dot. One sees large orbit velocities near the
equator of the rotation and small velocities near the axis of
the rotation at each moment. – More details are explained
below.
The third of these Actions, Use Curve as Components of
~ω(t) in the Moving System, again reconstructs that rota-
tional motion that has its angular velocity given in the
moving system by the selected space curve. The space
curve therefore rotates with the motion. It leaves a trace
behind which shows the corresponding angular velocity
curve in the observer’s space. In the second Action this
curve was the given one.
Finally, there is one very special space curve, Solid Body
(Euler’s Polhode). If this space curve is selected for the
third Action above then the resulting motion is the physi-
cal motion around the center of mass of a rigid body, taken
to be a brick with edge lengths aa ≥ bb ≥ cc and initial
components of the angular momentum dd, ee, ff , see the
ATO of Solid Body.

Angular Velocity given in the Observer’s Space

Mathematicians and Physicists have slightly different pic-
tures of a motion in their minds. A physicist sees a solid
object moving in space, the movement is differentiable and
all points ~xi(t) of the moving object have their orbit ve-



locities ~xi
′(t). So far these functions could also describe a

mass of moving air. The word rigid motion means that the
pairwise distances |~xi(t)−~xj(t)| remain constant in time –
the points ~xi(t) could be the atoms of a stone. For a math-
ematician on the other hand the primary concept is that
of a distance preserving map of space, and a motion is a
1-parameter family of such maps. For physicists and math-
ematicians it is important to understand the velocity fields
~xi
′(t) of all the particles. Physicists begin by studying ro-

tations around fixed axes with constant angular velocities.
In such a situation one can compute all the velocities ~xi

′(t)
from one vector ~ω that is parallel to the rotation axis and
from the particle positions ~xi(t) as follows:

~xi
′(t) = ~ω × ~xi(t).

It is now a mathematical fact that differentiable families of
distance preserving maps have a very similar formula for
the velocities of the particles: For each time t there exists
a vector ~ω(t) such that we have:

~xi
′(t) = ~ω(t)× ~xi(t).

And vice versa, if such a relation between the velocities and
the positions holds then all pairwise distances between the
particles are constant in time. Therefore mathematicians
and physicists agree that a differentiable rigid motion is
characterized by this relation between particle positions
and particle velocities.



Now, a natural question is: If ~ω(t) is a given vector function
in R3, how can one reconstruct the rotational motion? We
answer this question by constructing a so called moving
frame {~ex(t), ~ey(t), ~ez(t)}, a time dependent orthonor-
mal basis. To do this we have to solve the following three
ODEs:

~ex
′(t) = ~ω(t)× ~ex(t), ~ex(0) = (1, 0, 0)

~ey
′(t) = ~ω(t)× ~ey(t), ~ey(0) = (0, 1, 0)

~ez
′(t) = ~ω(t)× ~ez(t), ~ez(0) = (0, 0, 1).

Next we observe that all linear combinations with constant
coefficients, i.e.
~x(t) := x · ~ex(t) + y · ~ey(t) + z · ~ez(t) satisfy
~x ′(t) = ~ω(t) × ~x(t) and are therefore orbits of the rota-
tional motion defined by the angular velocity ~ω(t).
To visualize this motion observe that for each fixed t the
velocity field ~v(~x) := ~ω(t) × ~x is the velocity field of the
ordinary rotation around the axis ~ω(t)R with constant an-
gular velocity |~ω(t)|.

Angular Velocity given in the Moving Space

What could it mean to give the angular velocity of a mo-
tion in moving space? We saw in the previous discus-
sion that we can describe the motion of space by giv-
ing a moving frame {~ex(t), ~ey(t), ~ez(t)}. The particles
of moving objects have position vectors that have con-
stant components ax, ay, az relative to this frame: ~xi(t) =
ax~ex(t)+ay~ey(t)+az~ez(t). Similarly we can prescribe ~ω(t)



by giving its components relative to the moving frame:
{ωx(t), ωy(t), ωz(t)}.

There is again a natural question: can we again reconstruct
a corresponding rotational motion for any vector function
~ω(t) that is given in this way?

The answer is almost the same as for the first question,
except that the three ODEs are no longer separate but are
coupled by the fifth line:

~ex
′(t) = ~ω(t)× ~ex(t), ~ex(0) = (1, 0, 0)

~ey
′(t) = ~ω(t)× ~ey(t), ~ey(0) = (0, 1, 0)

~ez
′(t) = ~ω(t)× ~ez(t), ~ez(0) = (0, 0, 1)

with

~ω(t) = ωx(t) · ~ex(t) + ωy(t) · ~ey(t) + ωz(t) · ~ez(t).

Historical note: The given curve {ωx(t), ωy(t), ωz(t)} in
the moving system is called the polhode of the motion and
the corresponding curve ~ω(t) = ωx(t) ·~ex(t)+ωy(t) ·~ey(t)+
ωz(t) · ~ez(t) in the inertial space is called the herpolhode.
The moving polhode and the fixed herpolhode touch each
other at each time t with tangents of equal length – because
the points on the momentary axis of rotation, ~ω(t)R, have
at time t the rotational velocity field ~ω(t) × ~ω(t) = ~0 in
R3. A visual interpretation of this fact is that the moving
polhode rolls without slipping along the fixed herpolhode.
(This description actually determines the rotational mo-
tion because the origin is fixed so that the polhode has no



freedom to rotate around the common tangent with the
herpolhode, there is only one way to roll along.)
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Free Rotational Motion of Rigid Bodies *

What is to observe in the 3D-XplorMath exhibit
Solid Body (Euler’s Polhode) ?

A brick – in the program of edge lengths aa ≥ bb ≥ cc ≥ 0
– is a good example of a solid (also: rigid) body. The
program illustrates the free rotational movement of such a
brick (i.e. gravity is ignored):
Select Solid Body (Euler’s Polhode), stop the alternation
between two pictures by a mouse click and select Do Poinsot
Construction From Polhode at the bottom of the Action
Menu. The resulting animation shows a freely tumbling
brick. By changing aa, bb, or cc one may watch other bricks
tumbling.
There are three other input parameters, dd, ee, ff . These
are initial conditions for the tumbling motion. If one uses
(dd, ee, ff) ≈ (1, 0.1, 0.1) or (dd, ee, ff) ≈ (0.1, 0.1, 1) then
there is not much tumbling. These motions are almost ro-
tations around the longest axis (aa) of the brick, respec-
tively the shortest axis (cc) . The fact that these rotation
axes stay close to their initial position is expressed by say-
ing: the rotations around the longest and the shortest axis
are stable. Now look again at the default initial conditions
(dd, ee, ff) ≈ (0.1, 1, 0.1). One observes that the momen-
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tary axis of rotation moves almost to the direction opposite
to the initial direction and then returns back. One says:
the rotation around the middle axis of the brick is unstable.
– By putting a tape around a book and trying to throw
it so that it rotates around one of the three axes one can
experimentally test these theoretical predictions.

The explanation of this behaviour has a mathematical part
and a physical part. The physical part is contained in the
initial picture, the mathematical part is the connection
between the initial picture and the annimation. We explain
the mathematical part in

Part I: From Angular Velocity to Rigid Motion

It is available in the Topics part of the Documentation.
This mathematical part has no physical limitations, any
of the space curves in the program can be used as angular
velocity curve and in the Action Menu one can select ani-
mations that show the resulting motions.
The physical part requires in addition to angular velocity
the physical notions tensor of inertia and angular momen-
tum. These are explained below. What can one say before
this theory about the initial picture of the program? We
see two space curves. The one on the sphere is the angular
momentum as a function of time in the coordinate system
of the brick. The other one is the angular velocity curve
(called Polhode). Both are intersections of quadratic sur-
faces, represented by dots in the picture. The two curves



are related by a fixed linear map – given by the tensor of
inertia. To emphasize this linear map the quadratic sur-
faces alternate between the domain and the range of this
map. Finally, these two curves together determine Eu-
ler’s differential equation for either of them. For example
the derivative of the angular momentum curve is the cross
product of the corresponding position vectors of the an-
gular momentum curve and the angular velocity curve, in
formulas: ~̀′(t) = ~̀(t)×~ω(t). The Action Menu entry Show
Repère Mobile and ODE illustrates this connection. The
dotted curves on the sphere are solutions for other initial
conditions dd, ee, ff with the same value dd2 + ee2 + ff2.
The default morph varies bb between aa and cc, it illus-
trates how the family of polhodes depends on the shape of
the brick.
And here is the theory:

Part II: Tensor of Inertia and Angular Momentum

The tensor of inertia is a map that transforms angular ve-
locity into angular momentum.
Historical note: The word tensor is a generic word that
describes objects from linear algebra that can be given by
components (indices!) with respect to a base. The tensor
of inertia is a linear map from the 3-dim vector space of
angular velocities to the 3-dim vector space of angular mo-
menta. What we need below is that for each solid body
there exists an orthonormal frame {~ex(t), ~ey(t), ~ez(t)} in
the rest space of the body (i.e. moving with the body) so



that the tensor of inertia Θ is a diagonal map:

angular momentum = Θ(~ω(t)) =

ωx(t) ·Θx~ex(t) + ωy(t) ·Θy~ey(t) + ωz(t) ·Θz~ez(t).

Θx,Θy,Θz are called principal moments of inertia.

We now explain the tensor of inertia in some more de-
tail. The result of the explanation will be the above for-
mula for the angular momentum. We view a solid body
as a collection of points of mass mi and position vector
~xi(t); the pairwise distances between these points are con-
stant. The origin is the center of mass of these points,
i.e.

∑
imi~xi(t) = ~0. For each mass point we have the fol-

lowing definitions, the corresponding notions for the solid
body are obtained by summation:
linear momentum: ~pi(t) := mi~xi

′(t)
angular momentum with respect to the origin:

~̀
i(t) := ~xi(t)× ~pi(t)

kinetic energy: Ei(t) := 1
2mi〈~xi ′(t), ~xi ′(t)〉.

The body is rigid, i.e. the distances between the points
are constant, therefore there is an angular velocity func-
tion ~ω(t) that relates the positions and velocities:
rotational motion: ~xi

′(t) = ~ω(t)× ~xi(t).
angular momentum: ~̀i(t) = ~xi(t)× (~ω(t)× ~xi(t)).

=: Θi(~ω(t)).
This tensor of inertia is most easily understood if we use
the relation between cross-product and matrix-product and



insert it into the above definitions. We obtain the expres-
sions for angular momentum and kinetic energy in terms
of the tensor of inertia and the angular velocity as follows:

~ω × ~x =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 ·
x
y
z


=

 0 z −y
−z 0 x
y −x 0

 ·
ωx
ωy
ωz


We obtain

~̀
i(t) =

mi

 0 zi −yi
−zi 0 xi
yi −xi 0

 0 −zi yi
zi 0 −xi
−yi xi 0

ωx
ωy
ωz


= mi

 y2
i + z2

i −xiyi −xizi
−xiyi y2

i + z2
i −yizi

−xizi −yizi x2
i + y2

i

ωx
ωy
ωz


= Θi(~ω) (Note the symmetry of the matrix of Θi).

Ei(t) =
1

2
〈Θi(~ω), ~ω〉.

The symmetry of Θ :=
∑
i Θi implies that we have an

orthonormal eigen basis for Θ. The corresponding eigen
values are the principal moments of inertia, Θx,Θy,Θz.



Finally, we will derive Euler’s equations, a first order ODE
for ~ω(t). Together with part I this determines the motion
of a solid body that rotates without exterior forces. We
will always take the eigen basis of Θ as the moving frame
of part I.

Newton’s laws imply that the total angular momentum is
constant in situations that are more general than the force
free rotation of a solid body. We omit this general theory
and show only that the conservation of angular momentum
is equivalent to Euler’s equations.

~̀(t) :=
∑
i

~̀
i(t) = Θ(~ω(t)) =

∑
ξ∈{x,y,z}

ωξ(t)Θξ~eξ(t)

implies

d

dt
~̀(t) =∑

ξ∈{x,y,z}

ωξ(t)
′Θξ~eξ(t) +

∑
ξ∈{x,y,z}

ωξ(t)Θξ~eξ
′(t).

Insert ~eξ
′(t) = ~ω(t)× ~eξ(t) to get∑
ξ∈{x,y,z}

ωξ(t)Θξ~eξ
′(t) = ~ω(t)× ~̀(t),

next compute the cross product in the base given by the
moving frame:

~ω(t)× ~̀(t) =
∑

ξ∈{x,y,z}

ωx
ωy
ωz

×
 `x
`y
`z


ξ

· ~eξ(t),



finally compare coefficients to get Euler’s equations:

 `x
`y
`z

′ =

Θxωx
Θyωy
Θzωz

′ = −

ωx
ωy
ωz

×
 `x
`y
`z

 ,

where the physics is contained in the relation

between ω and ` :

`x = Θxωx, `y = Θyωy, `z = Θzωz.

Considered as differential equation for the ω-components
these are Euler’s equations. This ODE-system implies im-
mediately that the two quadratic functions

|~̀ |2 = `2x + `2y + `2z = Θ2
xω

2
x + Θ2

yω
2
y + Θ2

zω
2
z and

2E = `xωx + `yωy + `zωz = Θxω
2
x + Θyω

2
y + Θzω

2
z

are constant along solution curves. The solutions are there-
fore intersections of two ellipsoids. If one considers the
ODE-system as differential equations for the `-components
then one of the ellipsoids is a sphere and the solutions
(`x(t), `y(t), `z(t)) are spherical curves. The choice of the
`-components as the functions to be determined therefore
simplifies the visualization and also leads to a slightly sim-
pler ODE-system, since the tensor of inertia enters only on
the right side, linearly, into the equations.

H.K. Space Curve TOC



User Curves By Curvature And Torsion *

The exhibit allows to create examples for the standard
Frenet theory of space curves. The initial dialogue allows
to input user choices for curvature and torsion as functions
of arc length, κ(s), τ(s).
The solution curves are programmed as if they were explic-
itly parametrized. Therefore all the Action Menu entries
for parametrized curves are also available for these ODE-
defined curves.

The differential equations in question are the famous

Frenet-Serret Equations:

ė1(t) := κ(t) · e2(t),

ė2(t) := −κ(t) · e1(t)− τ(t) · e3(t),

ė3(t) := τ(t) · e2(t).

For given continuous functions κ, τ these differential equa-
tions have — for given orthonormal initial values — unique
orthonormal solutions {e1(t), e2(t), e3(t)}.
The curve c(t) :=

∫ t
e1(s)ds is then parametrized by arc

length and has the given curvature functions κ, τ .

H.K.
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Userdefined Parametrized Space Curves *

These exhibits allow to input userdefined explicitly para-
metrized space curves in three different ways:
1.) User Cartesian: The three Cartesian coordinate func-
tions x(t), y(t), z(t) can be entered (Of course t does not
have to be arc length.)
2.) User Polar: The coordinate functions can be entered
in spherical polar coordinates r(t), θ(t), ϕ(t). In particular,
this allows to enter spherical curves. As usual:
x = r · sin θ · cosϕ, y = r · sin θ · sinϕ, z = r · cos θ.
3.) User Cylindrical: The coordinate functions can be
entered in cylindrical coordinates r(t), θ(t), z(t), with the
usual convention x = r · cos θ, y = r · sin θ, z = z.
Since Cylinders are isometric to the plane, this allows to
create space curves that are given on all the cylinders
r = const by the same intrinsic geodesic curvature data
κg(s).

H.K.
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About the Unduloid *

What are the different shapes that a soap film can take,
or to put it somewhat differently, what can we say about
the differential geometry of a mathematical surface that
approximates a soap film?

An important physical characteristic of the soap film is its
surface tension T . This depends only on the chemical com-
position of the liquid from which it is made, and so it is
the same at each point of the film. The difference in air
pressure between the two sides of the film is an environ-
mental variable that is also clearly the same at all points
of the film. Now it follows from physical principles (that
we will take for granted here) that the mean curvature H
of the soap film at any point is equal to P/T , and so we
see that a soap film is always represented by a surface that
has constant mean curvature.

For a soap film that we get by dipping a closed loop of wire
into soapy water, the air pressure on both sides is clearly
the same, so such a soap film must have mean curvature
zero. Such surfaces are called minimal surfaces, since it
can be shown that if we draw any small closed curve on
the surface, the area of the part of the surface inside the
curve is less than or equal to the area of any other surface
bounded by the curve.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/ Surfaces of Revolution

http://3D-XplorMath.org/


We consider minimal surfaces in considerable detail else-
where, and here we shall be interested in the case of soap
bubbles. These are soap films that (perhaps together with
some other surfaces) enclose a bounded region of space (the
“inside” of the bubble). For bubbles the pressure will be
slightly greater on the inside than on the outside, so that
the surface is what is called a CMC surface, that is it has
non-zero constant mean curvature (and of course for the
floating type it is often just a sphere).

If one blows a soap bubble between two parallel glass plates
then one can obtain CMC surfaces that are surfaces of
revolution, and such CMC surfaces are called Unduloids.

Consider a curve in the x-y-plane, given parametrically
by x = x(t), y = y(t), or as a graph (x, f(x)) of a func-
tion f . If one rotates this curve about the x-axis, it is
easy to compute an expression for the mean curvature H
of the resulting surface of revolution in terms of the first
and second derivative of x(t) and y(t) (or, in the graph
description, the derivatives of f). If this expression is set
equal to a positive constant H, one gets differential equa-
tions for the functions x(t) and y(t) (respectively for the
function f), and solving these ODE provides a method for
finding all CMC surfaces of revolution. Delaunay studied
this problem in 1841, and being an expert on the theory
of roulettes (i.e., a locus traced out by a point attached to
curve as that curve rolls on a line), he recognized that the
solutions of this differential equation could be identified
with the roulettes traced out by a focus of a conic section



as it rolls along the x-axis. The special case that the conic
is an ellipse gives the Unduloid. In 3D-XplorMath, the
Unduloid is literally constructed by this double process of
first rolling an ellipse and tracking one of its foci and then
rotating the resulting curve around the x-axis.

The default morph shows a family of unduloids that starts
with a cylinder and deforms towards a chain of spheres.
With the rolling construction of the Unduloid, we can-
not reach the chain of spheres because the parameter lines
become concentrated near the narrowing necks of the sur-
faces. However, if one resizes these necks so they have
constant waist size, then the necks converge to (minimal)
Catenoids. This fact was very important in the construc-
tion of very general examples by Kapouleas.

H.K. Surfaces of Revolution



Curvature Properties of Surfaces *

Any curvature discussion of surfaces assumes some knowl-
edge about curvature properties of curves.

Planar Curves have, at each point c(s), only one kind
of curvature. Consider a circle through c(s) that has the
same first and second derivative as the curve at c(s). Such
a circle is called osculating circle, it approximates the curve
better than any other circle and it can easily be recognized
if c′′′(s) =/ 0 : The circle has the same tangent as the
curve and is on different sides of the curve before and after
c(s). See Osculating Circles in the Action Menu. The
radius of this circle is called curvature radius r(s), and the
curvature is defined as κ(s) := 1/r(s). If s is the arclength
parameter, i.e. |c′(s)| = 1, then κ(s) = det(c′(s), c′′(s)).
The fundamental theorem for planar curves states:

If a continuous curvature function κ(s) is given
then there exists, up to congruence, exactly one
planar curve with this curvature function, namely:

define an antiderivative α(s) := α(0)+
∫ s

0
κ(σ)dσ and with

it a curve c(s) := c(0) +
∫ s

0

(
cosα(σ)
sinα(σ)

)
dσ.

This curve c(s) is parametrized by arclength and has cur-
vature function κ(s).

* This file is from the 3D-XplorMath project. Please see:
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Space Curves have the same definition of osculating cir-
cle and of curvature κ(s) as the plane curves. If s is arc-
length on c then c′′(s) is called principal curvature vector

and ~h(s) = c′′(s)/|c′′(s)| is called principal normal. The

Frenet frame along the curve is {c′,~h,~b = c′ × ~h}.
In addition, space curves have a second kind of curvature,
the rotation speed of the binormal ~b, also called torsion
τ(s) := −〈~b′(s),~h(s)〉 = +〈~h′(s),~b(s)〉. The fundamental
theorem for space curves (roughly) states:

If continuous curvature functions κ(s), τ(s) are
given then there exists, up to congruence, exactly
one space curve with these curvature functions.

Surfaces have as their most visible curvature properties
their normal curvatures: Consider at a surface point p the
intersection of the surface with all its normal planes at p.
The curvatures of these normal sections are the normal
curvatures. They can be computed as follows: Let N be
a unit normal field along the surface and c(s), c(0) = p a
normal section with c′(0) = ~e, |~e | = 1. Then its curvature,
the normal curvature in the direction ~e, is

κnormal(p,~e) = 〈D~eN,~e 〉 = −〈c′′(0), N〉.

These normal curvatures have a minimum and a maximum,
called the principal curvatures κ1, κ2 at p. The correspond-
ing vectors ~e are called the principal directions ~e1 ⊥ ~e2.
H := κ1 + κ2 and K := κ1 · κ2 are mean curvature and
Gauss curvature.



If the surface is given by an explicit parametrization, it is
straight forward to compute these data. If the surface is
given by an implicit equation f(x, y, z) = 0, one chooses
N(x, y, z) := grad f/|grad f | and computes 〈D~eN,~e 〉, as
before.
For these surfaces one finds in the Action Menu the entries:
Add Principal Curvature Fields,

Move Principal Curvature Circles.
They allow to view and move the above curvature objects.

Surface Organisation



Projected Sphere*

The elementary and differential geometric properties of tri-
angles and curves on spheres are explained in About Spher-
ical Curves in the documentation for Space Curves.
This exhibit has two goals:
1) The mechanical constructions of Ellipse, Cycloid and
Lemniscate in the plane are repeated on the sphere to give

mechanical constructions of Spherical Ellipses, Spherical
Cycloids and Spherical Lemniscates. In the plane and on
the sphere these constructions also give the tangents of the
curves. The curves are chosen in the Action Menu of the
sphere exhibit. They have the same parameters as in the
quoted space curve exhibits.
2) Two famous maps are explained: The angle preserv-
ing Stereographic Projection from the sphere to a tangent
plane and Archimedes’ area preserving projection from a
circumscribed cylinder to the sphere.
The sphere can be rendered with four different grids, se-
lectable in the Action Menu. After standard (geographi-
cal) polar coordinates have been chosen, one can add (also
from the Action Menu) four different spherical curves or
Archimedes’ projection. The spherical ellipses can also be
viewed on a grid consisting of confocal ellipses and stan-
dard longitudes. Stereographic projection is best explained
on a grid whose parameter lines are two orthogonal fami-
lies of circles through the projection center (”South Pole”);

* This file is from the 3D-XplorMath project. Please see:
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these circles are mapped to lines parallel to the x-axis or
the y-axis. The parameter lines of the last grid are two
families of Loxodromes (Constant Angle with Meridians);
with this grid one can see – via stereographic projection
– that groups of Möbius transformations may look much
simpler on the Riemann sphere than in the Gaussian plane.

Which parameters control what?
Spherical Ellipses: bb = distance of focal points,
aa > bb/2 = major axis. The default morph changes aa.
For the elliptic grid also: bb = distance of the focal points.
The construction demo runs automatically; if 0 < ff < 1
is taken as morphing parameter, the demo runs as movie.

Spherical Cycloids: aa · π = radius of the fixed circle.
Integer ee = order of symmetry (determines the radius of
the rolling circle). Length of drawing stick = bb · radius of
rolling circle. Automatic demo, morphing parameter ff .

Spherical Lemniscates: cc = length of the middle rod,
dd = length of the two outer rods. ff parameter of the
drawing pen, ff = 0.5 midpoint of middle rod. Automatic
demo, can be saved with morphing parameter 0 < ee < 1.

Loxodromes, Loxodromic grids: aa= slope parameter, with
aa = 0 giving a longitude curve resp. the standard polar
grid. cc = parameter (in degrees) for rotating the sphere
around the x-axis - if also stereographic projection is cho-
sen, then its center and image plane stay fixed while the
sphere rotates.



Explanation of Archimedes’ Projection

Let −π/2 ≤ u ≤ π/2 be the latitude parameter on a unit
sphere parametrized as (sin(u) cos(v), sin(u) sin(v), cos(u)).
Add the tangential cylinder around the equator (u = 0),
parametrized as (cos(v), sin(v), cos(u)). Archimedes’ map
is horizontal radial projection, i.e. points with the same
parameters (u, v) on the cylinder and the sphere corre-
spond to each other. This map shortens latitudes of the
cylinder at height cos(u) by the factor sin(u). The vertical
lines on the cylinder are, locally at height cos(u), stretched
by the factor 1/ sin(u).
With formulas:∣∣ d

du
(cos(v), sin(v), cos(u))

∣∣ = sin(u),cylinder: ∣∣ d
du

(sin(u) cos(v), sin(u) sin(v), cos(u))
∣∣ = 1.sphere:

This shows that Archimedes’ map is area preserving. The
unit sphere has therefore the same surface area as the cylin-
der of height 2 and radius 1, namely 2 · 2π.

This also implies that the volume of the solid sphere is 4π/3
because we can partition the boundary sphere into very
small domains and view the solid sphere as the (disjoint)
union of height= 1 pyramids which have as base the small
domains and their vertices are at the center of the sphere.



Explanation of Stereographic Projection

Geometrically stereographic projection is defined as the
1-1 central projection from a point on the sphere to the
tangent plane at the opposite point and vice versa. The
same definition works for the 2-sheeted hyperboloid, which
gives a map of similar importance as in the spherical case.
Formulas are slightly simpler if one projects to the plane
through the center of the sphere which is parallel to the
tangent plane opposite the center. Take S = (0, 0,−1) as
projection center, then:
Let (x, y, z) ∈ S2, i.e. x2 + y2 + z2 = 1. For z =/ − 1 put

St(x, y, z) := (x, y, 0)/(1 + z).

The inverse map is used just as often:
Let (u, v, 0) ∈ R2 ⊂ R3, then with r2 := 1 + u2 + v2 put

St−1(u, v, 0) := (2u, 2v, 2− r2)/r2.

The most important property of stereographic projection:
This map preserves angles or shorter: it is conformal.

Recall: A map preserves angles if for any two intersecting
curves in the domain holds: Their intersection angle is the
same as the intersection angle of their image curves. Of
course, the intersection angle of curves is defined as the in-
tersection angle of their tangents at the intersection point.
To prove that angles are preserved, it is therefore enough
to take as ’curves’ in the image plane just all straight lines.
Their stereographic preimages on the sphere are circles
through the projection center S. Any two such circles in-
tersect at S and their other intersection point with the



same angle. For any such circle holds: Its tangent at S
and its image line in the opposite tangent plane are paral-
lel. In other words: The image lines of two circles through
S intersect with the same angle as the two circles.
This proves that stereographic projection is conformal.

A second basic property of stereographic projection is:
Circles on the sphere which do not pass through S are
mapped to circles in the image plane. (We know already
that circles through S are mapped to straight lines.)
Proof. Take a circle on the sphere and consider all tan-
gents to the sphere which are perpendicular to the circle.
They form the tangential cone which touches the sphere
along the given circle. For each of these tangents consider
the plane spanned by the considered tangent and the pro-
jection center S. Intersect these planes with the sphere to
get circles through S which all intersect the given circle
orthogonally and all pass through one point, namely the
intersection of the line through S and the vertex of the
tangential cone with the sphere. The stereographic images
of these circles are all straight lines which all pass through
one point and meet the image curve orthogonally, i.e. they
are like radii. The image curve is therefore a circle – either
by the uniqueness theorem for ODEs or because the cone
with vertex S through the given circle is a quadratic cone
so that the image curve is known to be an ellipse - which
in turn has to be a circle because of the orthogonal radii.
(Provable also by computation) Surface Organisation



Surfaces of Revolution *

in particular with Constant Gauß or Mean Curvature

Surfaces of revolution are the simplest family of surfaces.
They are usually described by giving its meridian curve
s 7→ (r(s), h(s)), which then is rotated:

(x, y, z)(s, ϕ) := (r(s) cosϕ, r(s) sinϕ, h(s)).

The meridian curve may be given explicitly. However, any
kind of curvature condition can be expressed as an ordi-
nary differential equation for the meridian curve. There-
fore ODE-determined meridians are more interesting.

Formulas are particularly simple if the meridian is parame-
trized by arclength, i.e., r′2 + h′2 = 1. The curvature
of the latitude circles is 1/r(s) and the normal curvature
of the surface in their direction is a principal curvature,
namely κ2(s) = 1/r · h′. The other principal curvature is
the curvature of the meridian:

κ1(s) = 〈
(
r′′

h′′

)
,
(−h′
r′

)
〉 = −r′′h′ + h′′r′ = −r′′/h′.

For given Gauss curvature
K(s) = κ1(s) · κ2(s) = −r′′(s)/r(s)

the meridian is determined by the simple ODE (as long as
|r′s)| ≤ 1):

r′′(s) +K(s) · r(s) = 0, h(s) =

∫ s

0

√
1− r′(t)2dt.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/ Surface Organisation

http://3D-XplorMath.org/


In the case of K(s) := 0 each solution r(s) is a linear func-
tion. We obtain circular cylinders and cones.
Ferdinand Minding (1806 - 1885) studied the case of con-
stant nonzero curvature. He determined the geodesics on
the Pseudosphere (K = −1), but we could not find whether
he was the first to describe this famous surface. He ob-
tained the following formulas:

The examples for K = 1:

The Sphere:

r(s) = sin(s), 0 ≤ s ≤ π
With cone points:

r(s) = a sin(s), 0 ≤ s ≤ π, 0 < a < 1

With two singularity curves:

r(s) = a cos(s), −b ≤ s ≤ b, a > 1, sin(b) = 1/a.

The examples for K = −1:

The Pseudosphere (with singular curve {s = 0}):
r(s) = exp(−s), 0 ≤ s

With cone point and singular curve:

r(s) = a sinh(s), 0 ≤ s ≤ b, 0 < a < 1, cosh(b) = 1/a

With two singular curves:

r(s) = a cosh(s), −b ≤ s ≤ b, 0 < a, sinh(b) = 1/a.

The Pseudosphere cannot be extended beyond the singular
curve {s = 0}, because r′(s) > 1 for s < 0. But the metric



of the Pseudosphere,

ds2 + exp(−2s)dϕ2,

extends to a complete metric on R× R with K = −1 and
the same is true for the metric of the last example:

ds2 + a2 cosh2(s)dϕ2.

The fact that such a simply connected complete Rieman-
nian plane with K = −1 is isometric to the non-Euclidean
geometry of Bolyai and Lobachevsky was not yet estab-
lished when Minding studied geodesic triangles on the Pseu-
dosphere. Beltrami showed it in 1865.
Surfaces with K = −1 in R3 have another interesting
property: If the asymptote directions are described by
two vectorfields of constant length, then these vector fields
commute. For parametrizations of K = −1 surfaces with
asymptote lines as parameter lines one therefore has: the
edge lengths of the parameter quadrilaterals are all the
same. Such nets are called Tchebycheff nets. They are
determined by the angle between the asymptote lines. A
quite unexpected theory developed from here. It is out-
lined in Introduction to Pseudospherical Surfaces (or see
the Documentation Menu). The Pseudosphere turns out
to be the simplest example of that theory.
These Tchebycheff nets also play a crucial role in the proof
of Hilbert’s theorem, stating that the hyperbolic plane
cannot be smoothly immersed isometrically into R3. The
proof shows that the distance to a point, where the angle
between the asymptote lines is 0 or π, is finite.



The Catenoid (H = 0)

For the mean curvature we have

H(s) = κ1(s) + κ2(s) = −r′′/h′ + h′/r

with h′(s) =
√

1− r′(s)2.

Meusnier proved in 1776 that the Catenoid and the Heli-
coid are solutions of the minimal surface equation which
was discovered by Lagrange. The Catenoid is the surface
of revolution where the meridian curve is the rotated graph
(cosh(x), x). Reparametrization to arclength parameter
gives

r(s) =
√

1 + s2, h(s) = sinh−1(s)

r′(s) = s/
√

1 + s2, h′(s) = 1/
√

1 + s2

r′′(s) = (
√

1 + s2)−3,

which implies indeed H(s) = 0, so that the Catenoid is
a complete minimal surface of revolution, in fact the only
one.

The Unduloid (H = 1)

The Unduloid is a surface of revolution of constant mean
curvature H = 1. It was a crucial example for the devel-
opment of the theory of constant mean curvature surfaces.
See The Unduloid.

H.K. Surface Organisation



Explicit and Implicit Surfaces

Explicit versus Implicit Surfaces
Early Minimal Surfaces

Elementary Surfaces
Paraboloid
Ellipsoid
More About Quadratic Surfaces, includes:

1-Sheeted Hyperboloid, 2-Sheeted Hyperboloid
Hyperbolic Paraboloid, Cylinders and Cones

About Ruled Surfaces, includes:
Helicoid, Right Conoid, Whitney Umbrella

View Principal Curvature Directions on:
Monkey Saddle, Torus, Dupin Cyclides

Play With Formulas Lissajous Surface,
Double Helix, Column, Norm 1 Family

Snail Shell Surfaces are Families of Circles
Untangle Double Twist In SO(3)
Dirac Belt and Feynman Plate Tricks
Surfaces of Constant Width

Stereographic Projections from S3

Clifford Tori
Hopf-fibered Linked Tori
Bianchi - Pinkall Tori

Nonorientable Surfaces
Möbius Strip and Klein Bottle
Cross-Cap and Steiner’s Roman Surface
Boy Surfaces

Surface Organisation



Explicit versus Implicit Surfaces,*

in particular Level Sets of Functions

Surfaces in R3 are either described as parametrized images
F : D2 → R3 or as implicit surfaces, i.e., as levels of func-
tions f : R3 → R, as the set of points where f has some
given value, i.e. {x ∈ R3; f(x) = given}. Graphs of func-
tions h : R2 7→ R are both: F (u, v) := (u, v, h(u, v)) is
a parametrization and f(x, y, z) := h(x, y) − z is a level
function, f = 0 the implicit equation.
For most simple surfaces one has both representations, ex-
amples in 3DXM: All Quadratic Surfaces, Tori, Cyclides,
Cross-Cap, Steiner Surface, Algebraic Boy Surface, Whit-
ney Umbrella. In each case, the explicit and the implicit
version open the same Documentation.
One can more easily make images of parametrized surfaces
than of implicit surfaces, because every point p ∈ D can be
mapped with the given function F to obtain ‘explicitly’ a
point F (p) of the surface. Note however that the opposite
problem: “Given a point in R3, decide whether it lies on
the surface” does not have an easy answer. For an implicit
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surface, on the other hand, it is easy to decide whether a
given point in R3 is on the surface (simply check f(x)), but
no point is given explicitly, one has to use some algorithm
to find points x ∈ R3 which satisfy f(x) = given value.
Even after one has found many points on the surface, how
does one connect them, what is a good way to represent
the surface? The method of raytracing has been invented
as one solution. Choose some center point C, think of it to
be near the eyes of the viewer. Connect each pixel of the
screen with C by a line and decide whether this line meets
the surface. If it does then of all the intersection points
on the line choose the one closest to C, compute the nor-
mal of the surface at this point x (i.e. compute grad f(x))
and decide with this information what light (from fixed
light sources) will be reflected by the surface at x towards
C. Color that pixel accordingly. In this way one produces
an image which presents the surface as if it were an illumi-
nated object. The computation used to take very long, but
todays computers do such pictures while you wait, but not
quite fast enough for real time rotations. These pictures
look very realistic, but of course they show only what is
visible from the viewer, in particular: farther away parts
of the surface can be hidden by nearer parts.
In 3D-XplorMath a second method is offered. Imagine that
the surface is intersected with random lines until around
10 000 points have been found on the implicit surface. Then
red-green stereo is used to project these points to the screen.
When viewing through stereo glasses we see all these points



in the correct position in space and our brain interpolates
them and lets us see a surface in space. This representa-
tion shows all parts of the surface (within some viewing
sphere), not just the front most portions. Since one can
achieve fairly uniform distributions of points on level sur-
faces, one sees many points in the direction towards con-
tours of the surface. This emphasis of the contour points
is so strong that one gets a fair impression of the surface
even if one does not look through red-green glases. This
method is fast enough for real time rotations.
Once an implicit surface has been drawn, one has solved
the problem of computing the 3D-data of surface points
selected by mouse on the screen. One can therefore more
easily move geometric attributes, like curvature circles,
around on an implicit surface than on a parametrized sur-
face. See in both cases the Action Menu entry Move Prin-

cipal Curvature Circles.

What surfaces can one see?

In addition to the simple surfaces already mentioned we
have two groups. Alebraic Surfaces which have been stud-
ied because of their singularities, these have established
names and extensive literature. And Compact Surfaces
of higher genus, these are added because such surfaces do
not come with explicit parametrizations. (Their names are
given in 3DXM and not known elsewhere.) Already fairly
simple functions may have level surfaces which are more
complicated than tori, they are called bretzel surfaces of
genus g > 1.



How to find functions with compact levels of genus ≥ 2.
As an example, consider two circles of radius r = 1, in the
x-y-plane, with midpoints ±cc on the x-axis. These two
circles are described as the intersection of the x-y-plane:
{g(x, y, z) := z = 0} with the zero set of the function

h(x, y, z) :=
((x− cc)2 + y2 − 1) · ((x+ cc)2 + y2 − 1)

1 + (1 + cc)(x2 + y2)
.

The denominator prevents the function from growing too
fast, the weight factor 1 + cc is experimental. Next define

f(x, y, z) := h(x, y, z)2 + (1 + cc)g(x, y, z)2.

Clearly, the zero set of f is the union of the two circles,
which is not a surface, because grad f vanishes along this
zero set. However, most of the levels {(x, y, z); f(x, y, z) =
v > 0} are surfaces without singularities. If the two circles
intersect (0 < cc < 1), then for small v = ff the levels are
the boundary of a thickening of the two circles, i.e., surfaces
of genus 3. As ff increases either the middle hole or the
two outside holes close first (depending on cc). For large
ff the level surfaces are (not completely round) spheres.
Each time such a topological change occurs we observe one
special surface, it is not smooth like the other levels, but
has one or more cone like singularities.
If cc > 1 then, for small ff , the levels are disjoint tori.
As ff increases, either the tori grow together to a genus
2 surface, or the holes of the tori close first and later the
two sphere-like surfaces grow together.

This family is called Pretzel in 3DXM.



Functions with compact levels in 3D-XplorMath

One should always experiment with the level value v of the
function f . In 3DXM: v = ff . For small values of ff one
will see how the function was designed by guessing the de-
generate level f = 0. The Default Morph often varies ff ,
for example showing non-singular levels converging to the
singular one. In some cases other parameters are morphed,
for example to get larger values of the genus g. Some cases
offer: Flow to Minimum Set {f = 0} (see Action Menu).
(Artificial looking denominators in the following prevent
the function f from growing too fast.)
Note that the Action Menu has many decorations for im-
plicit surfaces: Curvature line fields, net of curvature lines,
normal curvature circles, geodesics with mouse chosen ini-
tial data, geodesic nets.

Pretzel : See page 5 of Explicit versus Implicit Surfaces
The surface has genus 0,1,2 or 3, depending on parameter
values.
f(x, y, z) := h(x, y, z)2 + (1 + cc)z2 with

h(x, y, z) :=
((x− cc)2 + y2 − 1) · ((x+ cc)2 + y2 − 1)))

1 + (1 + cc)(x2 + y2)

Bretzel2 , a genus 2 tube around a figure 8, genus 0 for
large ff :

f(x, y, z) :=

(
((1− x2)x2 − y2)2 + z2/2

)
(1 + bb(x2 + y2 + z2))

.

Bretzel5 , a genus 5 tube around two intersecting ellipses:
f(x, y, z) := ((x2 + y2/4− 1) · (x2/4 + y2 − 1))2 + z2/2.



Pilz , a genus 3 tube around circle and orthogonal ellipse:
f(x, y, z) :=
((x2 +y2−1)2 +(z−0.5)2) · (y2/aa2 +(z+cc)2−1)2 +x2)
− dd2(1 + bb(z − 0.5)2).
Default Morph:0.03 ≤ cc ≤ 0.83.

Orthocircles, a genus 5 tube around three intersecting or-
thogonal circles (aa = 1, ff = 0.05) or a tube around
three Borromean ellipses (aa = 2.3, ff = 0.2) – choose in
the Action Menu.
f(x, y, z) :=
((x2/aa+ y2 − 1)2 + z2) · ((y2/aa+ z2 − 1)2 + x2) ·
((z2/aa+ x2 − 1)2 + y2).
Use: Flow to Minimum Set {f = 0} (from Action Menu).

DecoCube, tube around six circles of radius cc on the faces
of a cube. Genus 5,13,17, depending on cc, ff :
f(x, y, z) := ((x2 + y2 − cc2)2 + (z2 − 1)2) ·
((y2 +z2−cc2)2 +(x2−1)2) · ((z2 +x2−cc2)2 +(y2−1)2).
Default Morph: ff = 0.02, 0.25 ≤ cc ≤ 1.3 .
Use: Flow to Minimum Set {f = 0} (from Action Menu).

DecoTetrahedron has as its minimum set four circles on the
faces of a tetrahedron. The formula is similar but more
complicated than the previous one. cc changes the radius
of the circles, bb changes their distance from the origin, ff
selects the level. Use: Flow to Minimum Set to see the
circles used for the current image.
The Default Morph changes cc and with it the genus.



JoinTwoTori is a genus 2 surface such that the connection
between the two tori does not much distort them if ff is
small. (It is used for genus-2-knots in Space Curves.)

Torright := ((x− cc)2 + y2 + z2 − aa2 − bb2)2

+ 4aa2(z2 − bb2)
Torleft := ((x+ cc)2 + y2 + z2 − aa2 − bb2)2

+ 4aa2(z2 − bb2)

f(x, y, z) :=
Torright · Torleft

1 + (x− cc)2 + (x+ cc)2 + y2 + z2/2
.

The Default Morph: 0.01 ≤ ff ≤ 2.5 joins the tori.

CubeOctahedron
The level surfaces of the function
fcube(x, y, z) := max(|x|, |y|, |z|) are cubes.
The level surfaces of the function
focta(x, y, z) := |x|+ |y|+ |z| are octahedra.

ã := min(2 · aa, 1), b̃ := 2 · min(bb, 1). These coefficients
for the following linear combination allow an interesting
morph.

f(x, y, z) := max(ã · focta(x, y, z) + b̃ · fcube(x, y, z)).
Default: aa = 0.5, bb = 1, ff = 1. This truncated cube is
Archimedes’ Cubeoctahedron.
Default Morph: aa = 2

3 →
1
3 , bb = 0.5→ 1.5, ff = 1.

This deformation from the octahedron to the cube passes
through three Archimedean solids.



Algebraic Functions with Singularities in 3DXM

CayleyCubic :

f(x, y, z) := 4(x2 + y2 + z2) + 16x y z − 1, ff = 0.
This cubic has 4 cone singularities at the vertices of a tetra-
hedron. The other surfaces in the Default ff-Morph are
nonsingular.

ClebschCubic :
f(x, y, z) :=
81(x3 + y3 + z3)− 189(x2(y+ z) + y2(z+x) + z2(x+ y)) +
54xyz+126(xy+yz+zx)−9(x2 +x+y2 +y+z2 +z)+1.
This cubic has no singularities but is famous for the 27
lines that lie on it. The lines are shown in 3DXM. The
surface has tetrahedral symmetry.

DoublyPinchedCubic :

f(x, y, z) := z(x2 + y2)− x2 + y2.
This cubic has two pinch-point singularities at ±1 on the
z-axis. The segment between the singularities lies on it.
The whole z-axis satisfies the equation; the Default Morph

shows how an infinite spike converges to this line.

KummerQuartic :

λ := (3aa2 − 1)/(3− aa2),
f(x, y, z) := (x2 + y2 + z2 − aa2)2

− λ((1− z)2 − 2x2)((1 + z)2 − 2y2), aa = 1.3.
This quartic has 4+12 cone singularities and tetrahedral
symmetry. Six noncompact pieces, each with two cone
points, are connected by five compact pieces which look like
curved tetrahedra. The singularities survive small changes,
see the Default Morph : 1.05 ≤ aa ≤ 1.5, ff = 0.



BarthSextic :
c1 := (3 +

√
5)/2, c2 := 2 +

√
5

f(x, y, z) :=
4(c1x

2− y2)(c1y
2− z2)(c1z

2−x2)− c2(x2 + y2 + z2− 1)2.
Barth’s Sextic has icosahedral symmetry. 20 tetrahedron-
like compact pieces are placed over the vertices of a do-
decahedron so that each tetrahedron has 3 of its vertices
at midpoints of dodecahedron edges. This accounts for 30
of the cone singularities. Each of the 20 outward pointing
vertices of the tetrahedra is connected via a cone singu-
larity to a cone-like noncompact piece of the Sextic. The
Default Morph embeds this singular surface in a family of
nonsingular sextics. Use Raytrace Rendering.

D4 :

f(x, y, z) := 4x3 + (aa− 3x)(x2 + y2) + bbz2

This family of cubics has a D4-singularity. At bb = 0 the
family degenerates into three planes, intersecting along the
z-axis.

UserDefined : Our example is the Cayley Cubic, see above.

H.K. TOC



Early Implicit Minimal Surfaces*

See: Helicoid-Catenoid and Scherk, Catalan, Henneberg
Minimal Surfaces

The early minimal surfaces have also implicit representa-
tions:

x2 + y2 − cosh(z)2 = 0Catenoid:

x cos(z)− y sin(z) = 0Helicoid:

sinh(x) sinh(y)− sin(z) = 0Scherk 1-periodic:

exp(z) cos(x)− cos(y) = 0Scherk 2-periodic:

After the Weierstrass representation was discovered they
were not much used – as far as we know. These implicit
equations are much less close to the geometry of the sur-
faces than the Weierstrass representation: other levels of
these functions are not minimal and the associate family
cannot be obtained from this representation. Although the
Gauss map at solution points of the equations is of course
the gradient of the implicit function at the solution point
(normalized to length 1), this does not give the Gauss map
as a meromorphic function.

* This file is from the 3D-XplorMath project. Please see:
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The Paraboloid *

See in Documentation: About Quadratic Surfaces.

The Paraboloid in 3D-XplorMath is parametrized as

x = aa · u · cos(v), y = bb · u · sin(v), z = cc · u2 − dd,

with the default aa = bb = 1, cc = 0.4, dd = 2. It is given

implicitly by f(x, y, z) := (z+dd)
cc − ( xaa )2 − ( ybb )

2 = 0.

The paraboloid is shown together with a few rays paral-
lel to the z-axis, the axis of revolution symmetry of this
surface. These rays are reflected in the surface and contin-
ued until they meet in the focal point of this paraboloid.
This image looks somewhat like the reflector of a car head-
light together with the rays from the light bulb, reflected
into parallel rays. The default Morph varies cc so that
the image changes from a headlight reflector to a satellite
antenna, with incoming parallel rays concentrated on the
receiver at the focal point of the antenna.

The entry Remove Focal Rays in the Action Menu returns
to the standard rendering for surfaces. Only in Wireframe

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/ TOC
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Display can one switch on the focal rays in the Action
Menu.

For geometric arguments concerning the focal point see:
Parabola in the Plane Curve category.

H.K. TOC



The Ellipsoid*

See in Documentation: About Quadratic Surfaces.

The Ellipsoid in 3D-XplorMath is parametrized as

x = aa · sinu · cos v, y = bb · sinu · sin v, z = cc · cosu,

with the default aa = bb = 1.5, cc = 2.0. It is given by the

Implicit Equation

f(x, y, z) := (x/aa)2 + (y/bb)2 + (z/cc)2 = 1.

In 3D-XplorMath the Ellipsoid is shown together with a
few rays which leave one focal point, are reflected in the
surface and come together again in the other focal point.
This illustrates the use of the Ellipsoid as a Whispering
Gallery. A whispering gallery may be realized by an Ellip-
soid ceiling in a pub so that the conversations at one table
can be heard at another table. Whispering galleries were
also built in royal parks with some ellipsoid reflector near
a table for visitors placed at one focal point and a hidden
chair for the listener at the other focal point.

The first default Morph varies the size of the Ellipsoid.
One can also select in the View Menu Morph Light Source

Of Rays to illustrate that the rays do not come together
at one point unless they start from a focal point.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/ TOC
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By selecting Remove Focal Rays in the Action Menu one
returns to the standard rendering of surfaces. One may
turn on the focal rays only if Wireframe Display is se-
lected.

For geometric arguments concerning the focal points see:
Ellipse in the Plane Curve category.

H.K. TOC



About Quadratic Surfaces *

Quadratic surfaces in R3 are the solution sets of quadratic
equations (see: Explicit versus Implicit Surfaces)

h(x, y, z) := Ax2 +By2 + Cz2 +Dxy + Exz + Fyz

+Gx+Hy + Jz +K = 0.

Explicit parametrizations are given at the end.
There are poor examples, i.e.

with no solutions: x2 + y2 + z2 + 1 = 0,

solutions consisting of a point: x2 + y2 + z2 = 0,

or solution sets consisting of a line: x2 + y2 = 0,

or solution sets like that of a linear function: x2 = 0.
But under mild assumptions, namely that the derivative
of h does not vanish on (most of) the solution set, we get
more interesting surfaces (possibly with singularities) as
solution sets.
For products of linear functions we have intersections of
(or parallel) planes: (x− y + a)(x± y + b) = 0,
we may have cylinders over quadratic curves, e.g. if the
equation does not contain z:

elliptic cylinder x2 + y2 − 1 = 0,

hyperbolic cylinder x2 − y2 − 1 = 0,

parabolic cylinder x2 − y = 0.

* This file is from the 3D-XplorMath project. Please see:
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There are various Cones, namely solution sets which con-
tain for each solution (x, y, z) =/ (0, 0, 0) the whole line
r · (x, y, z), r ∈ R through (0, 0, 0). For example, if we in-
tersect the previous cylinders with the plane z = 1 and take
the cone with vertex at (0, 0, 0) then these are described
by the following (so called “homogenous”) equations.
Cones: x2 + y2 − z2 = 0, x2 − y2 − z2 = 0, x2 − yz = 0.
And finally we have the quadratic surfaces which have nei-
ther singular points nor are they cylinders:

Ellipsoids x2/a2 + y2/b2 + z2/c2 − 1 = 0,
1-sheeted Hyperboloids x2/a2 + y2/b2 − z2/c2 − 1 = 0,
2-sheeted Hyperboloids x2/a2 + y2/b2 − z2/c2 + 1 = 0,
Elliptic Paraboloids x2/a2 + y2/b2 − z = 0,
Hyperbolic Paraboloids x2/a2 − y2/b2 − z = 0.

All other quadratic surfaces are obtained via coordinate
transformations from these examples. Try the
Experiment: Select Implicit from the Surface Menu and
type any quadratic equation into UserDefined. Compare
the displayed surface with those described above. (Note
that there may be no solutions.)

The 1-sheeted hyperboloids and the hyperbolic paraboloids
have an unexpected special property, they carry two fami-
lies of straight lines, see also: About Ruled Surfaces .
The hyperbolic paraboloid: x2 − y2 − z = 0 is cut by the
parallel family x + y = const of planes in (disjoint) lines
and also by the parallel planes x− y = const.
The 1-sheeted hyperboloid: x2 +y2−z2−1 = 0 is a surface



of revolution. Its tangent plane x = 1 intersects it in the
pair of orthogonal lines (y+z)(y−z) = 0, x = 1. Rotation
around the z-axis gives two families of lines on the surface.
Each tangent plane cuts the surface in two lines, one from
each family.

Explicit parametrizations

Ellipsoid:
x = aa · sinu cos v, y = bb · sinu sin v, z = cc · cosu,

1-sheeted Hyperboloid:
x = aa coshu cos v, y = bb coshu sin v, z = cc sinhu,

2-sheeted Hyperboloid (2nd sheet z → −z):
x = aa sinhu cos v, y = bb sinhu sin v, z = cc coshu,

Elliptic Paraboloid:
x = aa · u cos v, y = bb · u sin v, z = cc · u2,

Hyperbolic Paraboloid:
x = aa · u, y = bb · v, z = cc · uv.

H.K. TOC



Ruled Surfaces *

Cylinders, Cones, 1-sheeted Hyperboloid, Hyperbolic
Paraboloid, Helicoid, Right Conoid, Whitney Umbrella.
In other sections: Double Helix, Möbius Strip.

Informally speaking, a ruled surface is one that is a union
of straight lines (the rulings). To be more precise, it is a
surface that can be represented parametrically in the form:

x(u, v) = δ(u) + v ∗ λ(u)

where δ is a regular space curve (i.e., δ′ never vanishes)
called the directrix and λ is a smooth curve that does
not pass through the origin. Without loss of generality, we
can assume that |λ(t)| = 1. For each fixed u we get a line
v 7→ δ(u) + v ∗ λ(u) lying in the surface, and these are the
rulings. (Some surfaces can be parameterized in the above
form in two essentially different ways, and such surfaces
are called doubly-ruled surfaces.)

A ruled surface is called a cylinder if the directrix lies in
a plane P and λ(u) is a constant direction not parallel to
P , and it is called a cone if all the rulings pass through a
fixed point V (the vertex).

* This file is from the 3D-XplorMath project. Please see:
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Two more interesting examples are quadratic surfaces:

The Hyperboloid of One Sheet:

x2

a2
+
y2

b2
− z2

c2
= 1,

which is in fact doubly-ruled, since it can be given para-
metrically by:

x+(u, v) = a(cos(u)− v sin(u)), b(sin(u) + v cos(u), cv)

and

x−(u, v) = a(cos(u) + v sin(u)), b(sin(u)− v cos(u),−cv),

and the Hyperbolic Paraboloid:

(x, y, z) = (a u, b v, c u v) = a(u, 0, 0) + v(0, b, c u).

Another interesting ruled surface is a minimal surface:

the Helicoid, aa = 0, (Catenoid, aa = π/2) in the family:

F (u, v) = bb sin(aa)
(

cosh(v) cos(u), cosh(v) sin(u), v
)

+ bb cos(aa)
(

sinh(v) sin(u), − sinh(v) cos(u), u
)

= sin(aa)
(
(0, 0, bb v) + bb cosh(v)(cos(u), sin(u), 0)

)
+ cos(aa)

(
(0, 0, bb u) + bb sinh(v)(sin(u),− cos(u), 0)

)
.



A ruled surface is called a (generalized) right conoid if its
rulings are parallel to some plane, P , and all pass through
a line L that is orthogonal to P . The Right Conoid is
given by taking P to be the xy-plane and L the z-axis:

F (u, v) = (v cosu, v sinu, 2 sinu),Parametrized:

(
x

y
)2 − 4

z2
= 1.Implicitly:

This surface has at (sin(u) = ±1, v = 0) two pinch point
singularities. The default morph in 3DXM

deforms the Right Conoid to a Helicoid

so that the two stable pinch point singularities disappear,
at the final moment, through two unstable singularities:

Faa(u, v) = ( v cos(u), v sin(u), 2aa sin(u) + (1− aa)u ) .

Famous for such a singularity is the Whitney Umbrella,
another right conoid with rulings parallel to the x-y-plane:

F (u, v) = (u · v, u, v · v), implicitly: x2 − y2z = 0.

Again the default morph emphasizes the visualization of
the singularity by embedding the Whitney Umbrella
into a family of ruled surfaces, which develop a second
pinch point singularity that closes the surface at the top:

Faa(u, v) =

u · (aa · v + (1− aa) sin(πv))
u

aa · v2 − (1− aa) cos(πv)

 .

R.S.P. TOC



Monkey Saddle, Torus, Dupin Cyclide *

The Monkey Saddle is a saddle shaped surface with three
down valleys, allowing the two legs and the tail of the mon-
key to hang down. At its symmetry point both principal
curvatures are 0, and, this umbilic point is the simplest
singularity of a curvature line field. Choose in the Action
Menu: Add Principal Curvature Fields; in Wireframe

Display the parameter lines are omitted, the curvature
line fields (or one of them) represent the surface.
Its Parametrization as graph of a function is

FMonkey(u, v) = (aa · v, bb · u, cc · (u3 − 3uv2)).

In Geometry the word Torus usually implies a surface of
revolution; often a circle in the x-z-plane ist rotated around
the z-axis. In 3DXM an ellipse with axes bb, cc is rotated,
its midpoint rotates in the x-y-plane on a circle of radius
aa. The following Parametrization is used:

FTorus(u, v) =

 (aa+ bb · cosu) cos v
(aa+ bb · cosu) sin v

cc · sinu


Note that the parameter lines are principal curvature lines,
see Action Menu: Add Principal Curvature Fields.

* This file is from the 3D-XplorMath project. Please see:
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The Torus is also visualized among the Implicit Surfaces,
we derive its equation. In the x-z-plane we have two ellipses
and we multiply their equations:

(
(x− aa

bb

)2
+
( z
cc

)2 − 1) · (
(x+ aa

bb

)2
+
( z
cc

)2 − 1)

=
(x2 − aa2

bb2
)2

+ 2
(x2 + aa2

bb2
)
(
( z
cc

)2 − 1) + (
( z
cc

)2 − 1)2.

For the rotation around the z-axis we have to replace x by
r =

√
x2 + y2. The second expression avoids square roots.

Implicit Equation of the Torus:

fTorus(~x) = f(r, z) = 0 with r =
√
x2 + y2 and

f(r, z) :=(r2 − aa2

bb2
)2

+ 2
(r2 + aa2

bb2
)
(
( z
cc

)2 − 1) + (
( z
cc

)2 − 1)2.

The Cyclides of Dupin are obtained by inverting the
above torus in a sphere. The sphere of inversion has its
center ~m = (dd, 0, ee) in the x-z-plane and has radius ff .
The Default Morph moves the center closer to the torus.
Note that inversions map curvature lines to curvature lines.

~x 7→ Inv(~x) :=
ff2(~x− ~m)

|~x− ~m|2
+ ~m+

 0
0
hh

 ,The Inversion:

FCyclide(~x) := Inv(FTorus(~x)),Parametrization:

fCyclide(~x) := fTorus(Inv−1(~x)) = 0.Implicit Equation:
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Lissajous, Double Helix, Column, Norm 1 Family *

The French mathematician Jules Antoine Lissajous (1882-
1880) studied vibrating objects by reflecting a spot of light
of them, so that the various modes of vibration gave rise to
Lissajous curves, see Plane Curve Category. Lissajous
Space Curves and Lissajous Surfaces are a natural math-
ematical generalization. We use the Parametrization:

FLissajous(u, v) =

 sinu
sin v

sin((dd− aa u− bb v)/cc)


.

The Default Morph joins a surface with tetrahedral sym-
metry and conical singularities and a surface with cubical
symmetry and 12 pinch point singularities.

The Double Helix is a reminder of the famous double
helix from genetics. For playing purposes there are two
more parameters with default values dd = 0, ee = 0. We
use the parametrization:

AA := aa+ dd u, α := (1− ee u)u,

FDblHelix(u, v) =

AA((1− v) cosα+ v cos(α+ bb π))
AA((1− v) sinα+ v sin(α+ bb π))

cc u− 3.5


.

This is a family of ruled surfaces: try the Default Morph,

it varies the limits of the parameter v. With bb = 1 we get

* This file is from the 3D-XplorMath project. Please see:
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the Helicoid. The default parameters have been taken from
Watson-Crick and give a reasonably good representation of
molecular DNA. Dick Palais’ biologist friend Chandler Ful-
ton suggested the example and helped to get it right, many
thanks.
We suggest to select Move Principal Curvature Circles

from the Action Menu; this is seen best in Point Cloud

Display from the View Menu.

Column Surface is used here in the sense of an architec-
tural column, see the article by Marty Golubitzky and Ian
Melbourne at

http://www.mi.sanu.ac.rs/vismath/golub/index.html

The order of the rotational symmetry around the z-axis is
chosen with the 3DXM-parameter ii. Additional symme-
try types can be selected with the parameter hh = 1, . . . , 6;
for other values of hh the unsymmetrized column shape
is given by a formula that depends on the parameters
aa, . . . , gg, ii and on the coordinates (θ, z). The formula
is not determined by geometric properties, but is intended
for playing.
The Default Morph, with hh = 0, varies the shape only
mildly.

The Norm 1 Family is defined by the implicit equation:

f(x, y, z) = (|x|p + |y|p + |z|p)1/p = 1, 0 < p <∞.

We get at p = 1 an Octahedron, at p = 2 a Sphere and
at p = ∞ a Cube. For 1 ≤ p ≤ ∞ these surfaces can be



viewed as the unit sphere in R3 for a Banach metric deter-
mined by p.
We parametrize these surfaces by spherical polar coordi-
nates:

xp := sin v cosu, yp := sin v sinu, zp := cos v,

x := sign(xp)|xp|e, y := sign(yp)|yp|e, z := sign(zp)|zp|e.

To obtain a reasonable family we set the exponent e in
terms of the default morphing parameter ee as follows:

e := 1 + tan(ee), −π/4 < ee < π/2.

We obtain the Sphere at ee = 0,
the Octahedron at ee = π/4.
Numerical reasons prevent computation at ee = −π/4
(anyway a degenerate surface) and at ee = π/2, the Cube.
Already where we stop the computation the Pascal-values
of sin near π had to be improved.

H.K. TOC



Snail Shell Surface *

These snail-like surfaces are included for their entertaining
shapes. Try making one of your own. In spite of their
complicated appearance, the snail surfaces are constructed
as one-parameter families of circles u 7→ Cv(u). First we
introduce two auxiliary variables. The surface parameter
v is changed by a quadratic term that permits closing the
snails at the top. The parameter ee controls the size of the
opening of the snail (default ee = −2):

vv := v + (v + ee)2/16.
The second variable controls the radius of the circles:

s := exp(−cc · vv). (Note that s is a function of v.)
The circles u 7→ Cv(u) of radius s · bb lie in an r-y-plane:

r := s · aa + s · bb · cos(u),

y := dd(1− s) + s · bb · sin(u).
The parameter dd controls the length of the snail from top
to bottom. And the other two coordinates in R3 are

x := r cos(vv),

z := r sin(vv),
so that the plane of the circle Cv also rotates with v.
Advice: Make only small changes to cc and keep bb ≥ aa.
The Default Morph varies dd and adjusts bb a little.

T.K. TOC
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Untangle Double Twist In SO(3) *

The goal of this animation is first to visualize closed curves
in SO(3) and then morph these closed curves to visualize
homotopies. While a full rotation around a fixed axis is a
nontrivial loop in SO(3), doing it twice is a nullhomotopic
loop. It was made famous outside mathematics by Dirac’s
belt trick and Feynman’s plate trick.
Bob Palais has two descriptions of the homotopy in SO(3)
which are much simpler than to look at a 2-parameter fam-
ily of orthogonal matrices:
(a) A rotation with axis vector ~a and rotation angle ϕ can
be obtained as composition of two 180◦ rotations around
axes ~b,~c ⊥ ~a with angle(~b,~c) = ϕ/2. To get the double
twist around the z-axis (the loop of the above tricks) choose

~b := (1, 0, 0), ~c(s) := (sin(s), cos(s), 0), 0 ≤ s ≤ 2π.
It is obvious how to homotop the equator s 7→ ~c(s) into

the point loop ~b, hence homotop the double twist into id.
(b) A homotopy from one full twist to its inverse is given
by rotating the axis vector to its negative - simple enough.
Composition of this homotopy with the chosen full twist is
a homotopy from a double twist to the id-loop.
In other words, the challenge is not to formulate such a
homotopy, but to visualize it. And, again, the challenge is
to visualize a loop in SO(3), because a homotopy is simply
a time dependent morph of a loop.
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Let A(s) ∈ SO(3) be a loop of rotations with A(0) =
id = A(1). Consider a family of concentric spheres. They
should really be all the same spheres, but we use the ra-
dius parameter similar to the graph representation of a
1-dimensional function. Draw a spherical polygon P on
the innermost sphere of radius 1. Then draw the spher-
ical polygons A(s)P on the spheres of radius 1 + s. By
following the position of the moving spherical polygon as
s increases, one gets a good impression of the family A(s)
of rotations.
We use two opposite spherical polygons instead of one, to
emphasize the fixed innermost sphere.
The default morph 0 ≤ aa ≤ 1 unwraps the double twist,
of course keeping the endpoints fixed.
The morph 0 ≤ bb ≤ 1 with aa = 0 creates the double
twist around the z-axis (a loop only if bb = 1).
The circum radius of the spherical polygons is cc.
One can choose with dd ∈ {3, 4, 5, 6} the number of vertices
of the spherical polygon (dd = 5.2 is a pentagon star).
In the Action Menu is an entry intended for this demo:

Reflect tube in ImagePlaneYdirection

This allows to change the position of the spherical polygon.
The default position is around the z-axis. Moving it away
from the axis towards the equator creates rather different
images of the same family A(s) of rotations. Clicking this
entry a second time returns to the original position - unless
one has rotated the object with the mouse.
H.K. TOC



Dirac Belt and Feynman Plate Tricks *

Dirac invented the famous belt trick to demonstrate a
property of the motions of Euclidean Space that is indeed
difficult to imagine without visual help.

The trick is performed with a strip, or belt, that is ini-
tially parallel to the screen. The orthogonal projection of
the performance looks as follows: The left end of the belt
stays fixed, the right end moves around the left end in a
circular motion. It is important that the moving end stays
parallel to the fixed end through the whole trick (parallel
means: the final edge and the final normal each stay par-
allel to the initial edge and initial normal). One observes
with surprise:
After moving the right end once around the circle the belt
is twisted twice. After the second circular move the belt is
untwisted (as it was initially).

The trick is shown in stereo because it is impossible that
the belt stays in its initial plane when the ends are moved
as described. It is important to visualize how the different
parts of the belt move vertically to the screen.

It will be no surprise to observe that the first circular move-
ment – when looked at in 3D – is different from the second
circular movement. During the first circular movement the
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middle part of the belt moves vertically to be in front of
the screen while the two ends stay on the screen. During
the second circular movement it is the other way round:
the middle part of the belt moves vertically to be behind
the screen while the ends continue to be at their fixed ver-
tical position. As soon as one can fix this image in one’s
mind it is obvious how the circular motion with parallel
ends produces the twist of the belt.

Another instance of the same property of the Group of Eu-
clidean motions is the Feynman Plate Trick or Waiter’s
Cup Trick : It is possible to continuously rotate a cup
on ones horizontal hand in the same direction if during
the first rotation the hand is above elbow height, during
the second rotation below elbow height and so on, alter-
natingly above and below elbow height. Namely, imagine
that the shoulder is the fixed end of the belt and the al-
ways horizontal – but continuously rotating – middle part
of the belt is the hand. Choose Do Plate Trick from the
Animation Menu to see half the belt performing the trick.

Some people cannot believe what they see. In such a case
one can switch to Monocular Vision and Orthographic

Projection in the View Menu to watch the belt – without
at all observing the motion vertical to the screen. Or try
Patch Display for a solid belt.

B.P. TOC



Surfaces of Constant Width*

The name of these surfaces derives from the fact that the
distance between opposite parallel tangent planes is con-
stant. See first: Convex Curve in the planar curve cate-
gory. There the default curve and the default morph show
curves of constant width and the ATO: On Curves Given

By Their Support Function explains how they are made.

Our surfaces of constant width are also described via their

Support Function h : S2 7→ R as:

F (x, y, z) := h(x, y, z) ·

x
y
z

+ grad S2h(x, y, z),

h(x, y, z) := aa+ bb z3 + cc xy2 + dd yz2 + ee xz2

+ ff xyz + gg xy2z2 > 0,

where x2 + y2 + z2 = 1.

The constant aa has to be chosen large enough so that
h(x, y, z) > 0. The default values are aa = 1, ff = 0.66, all
others = 0, for tetrahedral symmetry. With just aa, bb > 0
one gets surfaces of revolution, with aa, cc =/ 0 the surfaces
have 120◦ dihedral symmetry. Note that gg is the only
coefficient of a polynomial of degree 5.
Let c(t) = (x, y, z)(t) be a curve on S2. One computes with
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~n := (x, y, z)t that d
dtF (x, y, z)(t) ⊥ ~n, so that ~n(x, y, z) is

the normal of the surface parametrized by F . Therefore
h(x, y, z) is indeed the distance of the tangent plane at
F (x, y, z) from the origin. The origin is inside the surface
because h > 0. All terms defining h, except the constant
aa, are odd. This gives h(x, y, z) + h(−x,−y,−z) = 2 · aa
and this is the distance between opposite tangent planes,
i.e. the constant width.
Finally we compute the normal curvature, more precisely
the Weingarten map S.

d

dt
~n(t) = ċ(t) =: S · d

dt
F (c(t))

d

dt
F (x, y, z)(t) = 〈grad S2h, ċ(t)〉c(t) + h · ċ(t)

+ dċ(t)grad S2h

= h · ċ(t) +
(
dċ(t)grad S2h

)tangential
= h · ċ(t) +Dċ(t)grad S2h,

whereDċ, the tangential component of the Euclidean deriva-
tive dċ(t), is the covariant derivative of S2. We thus obtain
the Weingarten map S of the surface, computed in the
domain S2 of F :

d

dt
~n(t) =

(
h · id+Dgrad S2h

)−1 · d
dt
F (c(t)) = S · d

dt
F (c(t)).
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Clifford Tori *

a) Parametrized by Curvature Lines, b) Hopf-fibered

Clifford Tori are embeddings of the torus into the unit
sphere S3 of R4, by (u, v)→ F (u, v) := (w, x, y, z), where

FClifford(u, v) =


w
x
y
z

(u, v) =


cosα cosu
cosα sinu
sinα cos v
sinα sin v


α := aa+ bb sin(ee · 2 v), bb =/ 0 for Bianchi-Pinkall Tori.

(Note that this is, for bb = 0, the product of a circle in
the (w, x) plane with a second circle in the (y, z) plane,
and so is clearly flat.) To get something that we can see in
R3, we stereographically project S3 7→ R3; i.e., the Clifford
tori in R3 are the embeddings (u, v) → P (F (u, v)), where
P :S3 → R3 is Stereographic projection.
We take as the center of the stereographic projection map
the point (cos(cc π), 0, sin(cc π), 0). Varying cc deforms a
torus of revolution through cyclides. The Default Morph

varies aa, hence changes the ratio of the two circles.
Another morph, Conformal Inside-Out Morph (also in
the Animation Menu), is in R4 a rotation (parametrized
by 0 ≤ ff ≤ 2π), that moves the torus through the center
of the stereographic projection. The image in R3 therefore
passes through infinity: we see a torus with one puncture
that has a flat end. It looks like a plane with a handle.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/ TOC

http://3D-XplorMath.org/


The Clifford tori (in S3) are fibered by Great Circles, the
Hopf fibers, u + v = const. These Great Circles are of
course the asymptote lines on the tori. We show two ver-
sions of the stereographically projected Clifford tori: a)
parameterized by curvature lines and b) by Hopf fibers.
(To get the explicit parametrization of the latter, take
F (u+ v, u− v) in the above formulae.)
The classical Clifford Torus corresponds to α = aa =π/4.
It has maximal area among the family and divides S3 into
two congruent solid tori. But the other torus-leaves of
the foliation, obtained by varying aa, are also interesting.
All of them are foliated by Clifford-parallel great circles
and hence flat. They are special cases of the flat Bianchi-
Pinkall Tori in S3 (visible after stereographic projection)
and discussed in more detail in their ATO (“About This
Object...”), see the Documentation Menu.
Why is the ff -morph a Conformal Inside-Out Morph?
A compact surface divides R3 in two components and the
bounded component is called the inside. One surface of
the family, the once punctured torus that passes through
infinity, divides R3 into two congruent unbounded compo-
nents. This surface has no inside and at this moment in
the deformation inside and outside are interchanged. The
180 degree rotation in the rotation family is, on the π/4-
torus, a conformal anti-involution. It has a Hopf fiber as
connected fixed point set. Use in the Action Menu Sur-

face Coloration and choose the default two-sided user

coloration which emphasizes the fixed fiber.

H.K. TOC



Hopf Fibration and Clifford Translation *

of the 3-sphere
See Clifford Tori

Most rotations of the 3-dimensional sphere S3 are quite
different from what we might expect from familiarity with
2-sphere rotations. To begin with, most of them have no
fixed points, and in fact, certain 1-parameter subgroups of
rotations of S3 resemble translations so much, that they
are referred to as Clifford translations. The description
by formulas looks nicer in complex notation. For this we
identify R2 with C, as usual, and multiplication by i in C

represented in R2 by matrix multiplication by

(
0 −1
1 0

)
.

Then the unit sphere S3 in R4 is given by:

S3 := {p = (z1, z2) ∈ C2; |z1|2 + |z2|2 = 1}

∼ {(x1, x2, x3, x4) ∈ R4;
∑

(xk)2 = 1}.

And for ϕ ∈ R we define the Clifford Translation Cϕ :

S3 → S3 by Cϕ(z1, z2) := (eiϕz1, e
iϕz2).

The orbits of the one-parameter group Cϕ are all great
circles, and they are equidistant from each other in analogy
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to a family of parallel lines; it is because of this behaviour
that the Cϕ are called Clifford translations.

But in another respect the behaviour of the Cϕ is quite
different from a translation – so different that it is diffi-
cult to imagine in R3. At each point p ∈ S3 we have one
2-dimensional subspace of the tangent space of S3 which
is orthogonal to the great circle orbit through p. A Eu-
clidean translation would simply translate these normal
spaces into each other, but a Clifford translation rotates
them so that the velocity of the translation along the orbit
is equal to the angular velocity of the rotation of the nor-
mal spaces. This normal rotation is responsible for a very
curious fact which is illustrated by the image in 3DXM:

Any two orbits are linked !

The fact that any two orbits are equidistant permits us to
make the set of orbits into a metric space., and one can
check that this space is isometric to the sphere of radius
one-half in R3. Therefore one can map h : S3 → S2 by
mapping p ∈ S3 to its orbit, identified as a point of S2,
and one can write this mapping in coordinates as:

h(z1, z2) = (|z1|2 − |z2|2,Re(z1z2), Im(z1z2))

This map h is called the Hopf map (or Hopf Fibration), and
the orbits, the fibres of this map, are called Hopf fibres. It
is named for Heinz Hopf, who studied it in detail, and



found the completely unexpected fact that this map could
not be deformed to a constant map.

The visualization in 3D-XplorMath shows four tori each of
which is made up of Hopf fibres. We emphasize this with
the coloration: each fibre has a constant colour and the
colour varies with the distance of the fibres. One can see
that any two of the four tori are linked, and one can also
see that any two fibres on any one such torus are linked.
Since 3D-XplorMath visualizes objects in R3, not in S3,
before rendering the tori, we first map them into R3 using
the following stereographic projection S3 → R3

‘T13’:

(x1, x2, x3, x4)→ (x1, x2, x3)/(1 + x4).

The use of morphing parameters:

The three cyclide-tori are made from the torus of revolu-
tion by quaternion multiplication in S3 with
Qt2 = (cos ee, 0, sin ee sin bb, sin ee cos bb),
Qt3 = (cos ff cos cc, sin ff, 0, cos ff sin cc),
Qt4 = (cos gg, 0, sin gg cos dd, sin gg sin dd).
One can therefore morph the first cyclide with the parame-
ters bb, ee, the second with cc, ff and the third with dd, gg.
The Default Morph changes the first two cyclides slightly
while the third one performs a full rotation in S3 which
moves it in R3 from its initial position through the torus
of revolution and continues back to the initial position.
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Bianchi-Pinkall Flat Tori in S3 *

See ‘Clifford’ and Hopf-fibered Linked Tori first.

1. Parameter Dependent Formulas in 3DXM

We can parametrize S3, considered as a submanifold of C2,
by:

F (u, α, v) = (cos(α)eiueiv, sin(α)eiue−iv),

where u ∈ [0, 2π), α ∈ [0, π/2], and v ∈ [0, π]. We will get
the Bianchi-Pinkall Tori first as flat tori in S3 by taking
α to be a function of v,

α := aa+ bb sin(ee · 2v)
(although the theory allows more general choices.) Next
we stereographically project S3 from

p = (cos(cc · π), 0, sin(cc · π), 0)
to get conformal images of the flat tori in S3. The lines
v = const are circles, the stereographic images of the Hopf
circles u 7→ F (u, α, v).
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The Default Morph chooses ee = 5 and changes the am-
plitude bb thus increasing the five ’ears’ of the torus. The
Range Morph starts with a narrow band between two Hopf
circles and widenes this band to the complete surface. Fi-
nally, the Conformal Inside-Out Morph, 0 ≤ ff ≤ 2π,
isometrically rotates S3 so that the Hopf circle v = 0 is the
rotation axis. The stereographic image of this rotation is a
conformal transformation of R3 ∪{∞} which “rotates” R3

around a circle on the pictured torus. In the case aa = π/4
we obtain for ff = 0 and ff = π the same torus, but in-
side and outside interchanged. This is best viewed with
the default Two Sided User Coloration, selectable from
the Surface Coloration Submenu of the Action Menu.

2. Background and Explanations

The tori that we usually see are, from the point of view
of complex analysis, rectangular tori, meaning that they
have an orientation reversing symmetry and the set of fixed
points of this symmetry has two components. (The bet-
ter known tori of revolution have isometric reflections with
two circles as fixed point sets.) Of course one tries to de-
form these tori to obtain non-rectangular ones. Obviously
one can destroy the mirror symmetry, but this does not
imply that one gets tori with a non-rectangular complex
structure. The first proof, by Garcia, that one can embed
all tori in R3 was non-constructive and difficult.

A simpler and constructive way to get tori with arbitrary



conformal type was found by Pinkall, whose idea was to
construct tori that are flat in S3 (and hence have an easy
way to compute their conformal type from their flat ge-
ometry), and then stereographically project them to R3.
While the resulting tori are no longer flat, this does pre-
serve their conformal type.

The construction of flat surfaces in S3 goes back to 1894,
when Bianchi classified all flat immersions in S3. In partic-
ular, he realized that the two families of asymptotic lines of
a flat surface in S3 are left translations of a pair of curves
that are either great circles or have constant torsion +1
and −1, respectively. The left translations arise by view-
ing S3 as the group of unit quaternions. An open problem
for Bianchi was to determine when his flat surfaces were
closed.

The first case when one of the curves is a great circle is of
special interest for this problem. To explain why, we will
need the Hopf fibration. Thinking of S3 as being part of C2,
we can multiply points of S3 by eiu, thus fibering S3 with
circles, the Hopf circles, and the set of all such circles forms
a metric space with distance being the distance between
the Hopf circles in S3. As such it is isometric to a 2-
dimensional sphere of radius 1/2. We thus obtain a natural
projection S3 → S2, the Hopf map. It can be written
as (z1, z2) 7→ z1/z2, where we interpret the range as the

Riemann sphere Ĉ. Moreover, Hopf circles are mapped to
Hopf circles by left translations.



Now suppose we have a flat surface in S3 where one of the
generating curves is a great circle. We can arrange S3 so
that this great circle is part of the Hopf fibration, and thus
all curves of the same family of asymptotic lines are Hopf
circles. The surface in S3 is thus invariant under the Hopf
action and projects to a curve in S2 under the Hopf map.
Vice versa, the preimage of a curve in S2 under the Hopf
map yields a flat surface in S3. In case the curve in S2 is
closed, the surface in S3 is a flat torus. (The explanation
so far is described in more detail in Spivak IV, p. 139ff.)

Pinkall found a simple way to determine the conformal
type of the flat torus in terms of the geometry of the curve
in S2 — in particular it was then easy to see that all pos-
sible conformal types can occur.

3. Visualizing Parts of the Theoretic Description

We cannot visualize S3 in such a way that all distances are
preserved. We will use stereographic projection from p =
(cos(cc ·π), 0, sin(cc ·π), 0) to map S3−{p} one-to-one onto
R3. Recall that: angles are not changed by stereographic
projection, circles are mapped to circles or straight lines,
and the images of great circles meet the equator sphere in
antipodal points, so many properties of S3 get represented
in geometrically comprehensible ways.
Our parametrization F of S3 emphasizes the Hopf fibration
since the great circles u 7→ F (u, α, v) are indeed the orbits
of the Hopf-action of S1 on S3, given by (u, p) 7→ eiup.
Each such “Hopf Fiber” lies in one of the parallel tori α =



constant, and the great circles α 7→ F (u, α, v), meet these
(α = constant)-tori orthogonally, so that α measures the
distance between them.
We get all the Hopf circles on each α-torus for 0 ≤ v ≤ π,
except that those tori degenerate to just one Hopf circle if
α = 0 or α = π. This makes it plausible that (α, 2v) are
polar coordinates on the metric space of Hopf circles, on
the image S2 of the Hopf map.
Pinkall has observed that the closed curves on this image
sphere, in polar coordinates given as: (α(s), 2v(s)), (with
α(s) never equal to 0 or π/2) allow one to write down
immersed tori in S3 as:

(u, s) 7→ (F (u, α(s), v(s)).

For example taking α(s) = π/4 gives the “Clifford Torus”
in S3, a minimal embedding of the square torus. For other
constant α(s) in (0, π/2) one gets the above parallel family
of α-tori, the lengths of their two orthogonal generators are
2π cos(α) and 2π sin(α).

On all of these tori we still have that the parameter lines
s = constant are Hopf-Fibers, and since these are equi-
distant (as orbits of an isometric action) it follows that
the metric is flat. Pinkall proved that length and area of
the curve in S2 determine the conformal structure of the
torus in S3, hence in R3, and that all conformal structures
occur.

Observe that the usual tori of revolution in R3 are all
rectangular, and most of the Bianchi-Pinkall tori shown
by 3D-XplorMath are very different from these. The tori



with aa = π/4 are all rhombic, because they can be ro-
tated into themselves by 180◦ rotations (in S3, not in R3)
around any of the Hopf-Fibers on them. A cyclic morph
with 0 ≤ ff ≤ 2π rotates around the circle v = 0 (we see
of course the stereographic image of that rotation). For
ff = π we get an anti-involution of the torus with the cir-
cle as the (connected) fixed point set—only rhombic tori
have such anti-involutions. (The square torus is rectangu-
lar and rhombic.) In the rhombic case aa = π/4 we get for
ff = π/2 and ff = 3π/2 surfaces in S3 that pass through
p so that the stereographic images in R3 pass through ∞
— otherwise we could not turn the torus inside out con-
tinuously.

The program takes α(v) := aa+ bb sin(ee 2v) (with ee = 3
for the default image and ee = 5 for the default morph),
allowing rather different examples.
Again, these tori are shown in R3 by using the (confor-
mal) stereographic projection of S3 \ {p} → R3, where
p = (cos(cc · π), 0, sin(cc · π), 0) . Morphing cc therefore
gives other images of S3, in particular other conformal im-
ages of these tori.
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Möbius Strip and Klein Bottle *

Other non-orientable surfaces in 3DXM:
Cross-Cap, Steiner Surface, Boy Surfaces.

The Möbius Strip is the simplest of the non-orientable
surfaces. On all others one can find Möbius Strips. In
3DXM we show a family with ff halftwists (non-orientable
for odd ff , ff = 1 the standard strip). All of them are
ruled surfaces, their lines rotate around a central circle.
Möbius Strip Parametrization:

FMöbius(u, v) =

 aa(cos(v) + u cos(ff · v/2) cos(v))
aa(sin(v) + u cos(ff · v/2) sin(v))

aa u sin(ff · v/2)


.

Try from the View Menu: Distinguish Sides By Color.
You will see that the sides are not distinguished—because
there is only one: follow the band around.

We construct a Klein Bottle by curving the rulings of the
Möbius Strip into figure eight curves, see the Klein Bottle
Parametrization below and its Range Morph in 3DXM.

w = ff · v/2

FKlein(u, v) =

 (aa+ cosw sinu− sinw sin 2u) cos v
(aa+ cosw sinu− sinw sin 2u) sin v

sinw sinu+ cosw sin 2u


.
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Actually, there are three different Klein Bottles which one
cannot deform into each other through immersions. The
best known one has a reflectional symmetry and looks like
a veird bottle. The other two are mirror images of each
other. Along the central circle one of them is left-rotating
the other right-rotating. See the Default Morph of the
Möbius Strip or of the Klein Bottle: both morphs connect
a left-rotating to a right-rotating surface.

On the Boy Surface one can see different Möbius Strips.
The Default Morph begins with an equator band which is
a Möbius Strip with three halftwists. As the strip widens
during the deformation it first passes through the triple
intersection point and at the end closes the surfaces with
a disk around the center of the polar coordinates.
Moreover, each meridian is the centerline of an ordinary
Möbius Strip. Our second morph, the Range Morph, ro-
tates a meridian band around the polar center and covers
the surface with embedded Möbius Strips. - We suggest
to also view these morphs using Distinguish Sides By

Color from the View Menu.

On the Steiner Surface and the Cross-Cap the Möbius
Strips have self-intersections and are therefore more dif-
ficult to see. The Default Morph for the Steiner Surface
emphasizes this unusual Möbius Strip. - The Range Morph

of the Cross-Cap shows a family of embedded disks, except
at the last moment, when opposite points of the boundary
are identified, covering the self-intersection segment twice.
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The Cross-Cap and Steiner’s Roman Surface *

Opposite boundary points of
this embedded disk are iden-
tified along a segment of dou-
ble points when the surface
is closed to make the Cross-
Cap. Pinchpoint singularities
form at the endpoints of the
selfintersection segment.

In the 19th century images of the projective plane where
found by restricting quadratic maps f : R3 7→ R3 to the
unit sphere. For example a Cross-Cap is obtained with
f(x, y, z) = (xz, yz, (z2 − x2)/2, and Steiner’s Roman
Surface with f(x, y, z) = (xy, yz, zx).
Parametrizations follow by restricting to a parametrized
sphere FSphere(u, v) =

(
sinu cos v, sinu sin v, cosu

)
.

Steiner’s surface has three self-intersection segments and
six pinchpoint singularities. The Default Morph empha-
sizes a (self-intersecting) Möbius Band on this surface.

Cross-caps occur naturally as a family by a differential ge-
ometric construction. Consider at a point p of positive
curvature of some surface the family of all the normal cur-
vature circles at p. They form a cross-cap and the two
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pinchpoint sigularities are the points opposite to p on the
two principal curvature circles. The parameters aa, bb in
3DXM are the two principal curvature radii. The Default

Morph varies bb from bb = 0.4aa to bb = aa, a sphere. A
Range Morph starts by taking half of each normal curva-
ture circle and slowly extends them to full circles.

To derive a parametrization of this family of cross-caps let
e1, e2 be a principal curvature frame at p, let κ1, κ2 be
the principal curvatures and r1 := 1/κ1, r2 := 1/κ2 the
principal curvature radii at p. The normal curvature in
the direction e(ϕ) := e1 cosϕ+ e2 sinϕ is
κ(ϕ) := κ1 cos2 ϕ+ κ2 sin2 ϕ with r(ϕ) := 1/κ(ϕ).
In 3DXM we parametrize the circles by u ∈ [−π, π] and
use v = ϕ. Denoting the surface normal by n we get the
family of normal circles as

r(v) · (−n+ n · cosu+ e(v) · sinu), u ∈ [0, π], v ∈ [0, 2π].

Finaly we take {e1, e2, n} as the (x, y, z) coordinate frame
and allow translation by cc along the z-axis to get our

Parametrization of the normal curvature Cross-cap

r(v) = r1r2/(r2 cos2 v + r1 sin2 v),

x = r(v) cos v sinu,

y = r(v) sin v sinu,

z − cc = r(v)(−1 + cosu) = 2r(v) sin2(u/2),

u ∈ [0, π], v ∈ [0, 2π].



To also get an implicit equation we observe
y/x = tan v and z2/(x2 + y2) = tan2(u/2).

This leads to

x2/(x2 + y2) = cos2 v,

y2/(x2 + y2) = sin2 v,

z2/(x2 + y2 + z2) = sin2 u/2,

(x2 + y2)/(x2 + y2 + z2) = cos2 u/2.

The first two of these equations eliminate v from r(v). The
third one eliminates u from z/r(v) = 2 sin2(u/2) and gives
(with r1 = aa, r2 = bb) an

Implicit equation of the normal curvature Cross-cap

(
x2

aa
+
y2

bb
)(x2 + y2 + z2) + 2z(x2 + y2) = 0.

Finally, replacing z by z − cc will translate the cross-cap,
e.g. cc = 2bb puts the pinchpoint of the smaller curvature
circle to the origin of R3.
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Boy Surfaces,*

following Apery and Bryant-Kusner

See Möbius Strip and Cross-Cap first.

All the early images of the projective plane in R3 had sin-
gularities, the Boy Surface was the first immersion. Since
the projective plane is non-orientable, no embedding into
R3 exists and self-intersection curves have to occur on the
image. In fact, the self-intersection curve of the Boy sur-
face is also not embedded, the surface has a triple point.
Boy discovered the surface while working for his PhD un-
der Hilbert. Boy’s construction was differential topology
work, his surface has no special local geometry.

Apery found an Algebraic Boy Surface. Moreover, his
surface is covered by a 1-parameter family of ellipses. This
is his Parametrization:

FApery(u, v) =


cos2(u) cos(2v)+sin(2u) cos(v)/

√
2√

2−sin(2u) sin(3v)

cos2(u) sin(2v)−sin(2u) sin(v)/
√

2√
2−sin(2u) sin(3v)√

2 cos2(u)

(
√

2−sin(2u) sin(3v))


.

This parametrization is obtained by restricting the follow-
ing even map from R3 to R3 to the unit sphere:
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denom := (
√

2− 6xz)(x2 + y2) + 8x3z

Fx := ((x2 − y2)z2 +
√

2xz(x2 + y2))/denom

Fy := (2xyz2 −
√

2yz(x2 + y2))/denom

Fz := z2(x2 + y2)/denom

The image of the unit sphere is also an image of the pro-
jective plane since (Fx, Fy, Fz)(−p) = (Fx, Fy, Fz)(p).

The Default Morph starts with a band around the equa-
tor, which is a Möbius Strip with three halftwists. The
complete surface is obtained by attaching a disk (centered
at the polar center). 3DXM supplies a second morph,
Range Morph in the Animation Menu. It starts with a
band around a meridian, which is another Möbius Strip
with one halftwist. This Möbius Strip is moved over all
the meridians, covering the surface with embedded Möbius
Strips.

Bryant-Kusner Boy Surfaces are obtained by an inver-
sion from a minimal surface in R3. The minimal surface is
an immersion of S2−{6 points} such that antipodal points
have the same image in R3, so that the minimal surface is
an image of the projective plane minus three points. The
six punctures are three antipodal pairs, and the minimal
surface has so called planar ends at these punctures. This
is the same as saying that the Weierstrass-integrand has
no residues, hence can be explicitly integrated. In this con-
text it is important that the inversion of a planar end has a
puncture that can be smoothly closed by adding one point.



The closing of the three pairs of antipodal ends thus gives
a triple point on the smoothly immersed surface which is
obtained by inverting the minimal surface.

As Default Morph and as Range Morph we took the same
deformations as in the algebraic case. The first emphasizes
the equator Möbius Strip with three halftwists, the second
covers the surface with embedded Möbius Strips that have
meridians as center lines.

A Parametrization is obtained by first describing the mini-
mal surface as an image of the Gaussian plane, then invert
it in the unit sphere. Parameter lines come by taking polar
coordinates in the unit disk.

MinSurf(z) := Re(V (z)/a(z)) + (0, 0, 1/2), where

a(z) :=
(
z3 − z−3 +

√
5
)

and

V (z) :=
(
i(z2 + z−2), z2 + z−2, 2i

3 (z3 + z−3)
)
.

Finally the inversion:

Boy(z) :=
MinSurf(z)

||MinSurf(z)||2
.

We add the description of an ODE which allows to compute
the self-intersection curve as long as the two normals along
the self-intersection are not parallel – in other words, as
long as the self-intersection is transversal.

Let F : D2 7→ R3 be a parametrized surface with unit
normal field N : D2 7→ R3. Let p, q ∈ D2 be any two
points with N(p) =/ ±N(q).



The vector T := N(p)×N(q) is then tangent to the surface
at F (p) and F (q).
Therefore we have unique vectors ṗ ∈ TpD2, q̇ ∈ TqD2 such
that T = dFp · ṗ = dFq · q̇.
This defines an ODE on D2 ×D2 with singularities where
N(p) = ±N(q).

Claim: Along the pair of solution curves we have
F (p(t))− F (q(t)) = const.

Clearly:
(F (p(t))− F (q(t)))

·
= dFp · ṗ− dFq · q̇ = T − T = 0.

In particular, if we start at a self-intersection point
F (p(0)) = F (q(0)),

then the solution curve runs along the self-intersection,
F (p(t)) = F (q(t)).

In case one does not have an explicit self-intersection point
one can start from nearby points, meaning the distance
between F (p) and F (q) is small. On the intersection of
the tangent planes at these points find the point C which
is closest to the segment F (p)F (q). Use C−F (p) = dFp·∆p
and C−F (q) = dFq ·∆q to get points p+∆p, q+∆q which
are much closer to a self-intersection point,

F (p+ ∆p) ≈ F (q + ∆q).

Iteration of this procedure converges rapidly.

H.K. TOC



Nonorientable Surfaces *

All nonorientable surfaces in 3DXM are explained as subset
of the explicitly parametrized surfaces.
See TOC of explicitly parametrized or implicit surfaces.
Currently the menu offers seven examples:

Check the Animate Menu for special morphs, designed to
explain less obvious features of these surfaces.
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Implicit Surfaces *

All implicit surfaces in 3DXM are explained as subset of
the collection Explicitly parametrized or Implicit Surfaces.
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The Spherical Helicoids*

See also: K=1 Surfaces of Revolution

A general helicoid can be obtained by applying a screw
motion to a planar curve. Suppose the curve is given as
s 7→ (f(s), g(s)), then the helicoid can be written as

F (s, t) = (f(s) cos t, f(s) sin t, g(s) + ht)

with a non-zero constant h. The surface which is generally
called the helicoid arises as the special case f(s) = s and
g(s) = 0. Our more general class of helicoids is useful
because it allows to construct concrete examples of surfaces
that are otherwise elusive.

For example, let us specialize a little by taking f(s) = s
(so that the curve is a graph over the t-axis). Then the
Gauss curvature of these helicoids is

K =
−h2 + s3 g′(s) g′′(s)(
h2 + s2 + s2 g′(s)

2
)2

This is just a first order ODE for g′(s), and it is easy to
check that

g′(s) =

√
−1− h2

s2
+

1

a−
√
K s2
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is a 1-parameter family of solutions in the case that K
is a (positive) constant. The family parameter is a. Ob-
serve that the additional integration constant we get by
integrating g′ only amounts to a vertical translation of the
surface.

As all complete surfaces of positive constant curvatures are
round spheres, any other example must necessarily develop
singularities. This was for a long time a perfectly good
reason to ignore them, and now it has been for a while a
perfectly good reason to find them interesting.

For our spherical helicoids, the singularity arises as the
curve s = s0 for the value of s0 where the integrand g′(s)
becomes 0, and is thus a horizontal circle.

The surface appears as an exercise in Eisenhart’s A Trea-
tise On The Differential Geometry of Curves And Surfaces.
It was certainly well known much earlier.

M.W. TOC
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An alternative description

TOC
The velocity vector field X of a screw motion in R3 is
X(x, y, z) = (−y, x, h). On a surface that is screw motion
invariant one finds that the unit speed curves γ orthogonal
to X are geodesics: The covariant derivative D

dsγ
′ is zero

because it is orthogonal to γ′ and to X ◦ γ, namely:
0 = 〈γ′, γ′〉′ = 2〈γ′, Ddsγ

′〉
0 = 〈γ′, X ◦ γ〉 =⇒ 0 = 〈Ddsγ

′, X ◦ γ〉+ 0.
A Killing field restricts along a geodesic to a Jacobi field
J = X ◦ γ, and on a 2-dim surface we have (because of
γ′ ⊥ J) that J/|J | is a parallel field. Therefore we get
from the Jacobi equation

|J |′′ = −K · |J |, i.e., if K = 1 then |J(s)| = a · cos(s).

We write γ(s) = (γ1(s), γ2(s), γ3(s)) and abbreviate

r2 = x2 + y2, r(s) :=
√
γ2

1(s) + γ2
2(s). This gives:

|J(s)| =
√
r2(s) + h2 = a · cos(s).

What remains is a first order ODE for γ(s).
We abbreviate the radial horizontal vector field as nr, i.e.,
nr ◦ γ = (γ1, γ2, 0)/r, and we extend the orthonormal vec-
tors {nr, X/|X|} to an orthonormal basis with
nz(x, y, z) := (y · h/r,−x · h/r, r)/

√
r2 + h2. Then

γ′(s) = r′(s) · nr ◦ γ(s) +
√

1− r′(s)2 · nz ◦ γ(s).



One needs |r′(s)| ≤ 1 and this condition gives

smax :=

√
h2

a4
+

(
1− a2

2a2

)2

+
a2 − 1

2a2
.

One can check that this condition implies
r2(s) = a2 cos2(s)− h2 ≥ 0.

The final family, with parameters a and h, is

F (s, t) =

 γ1(s) cos t− γ2(s) sin t
γ1(s) sin t+ γ2(s) cos t

γ3(s) + h · t

 .

If h = 0 one obtains surfaces of revolution with meridian
γ(s), and a = 1 is the sphere.
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About the Sievert-Enneper Surface*

.

The Sievert-Enneper Surface

This surface stems from the PhD thesis of Sievert which
he wrote under Enneper. It is a surface of constant Gauss
curvature K = 1. Such surfaces are locally isometric to the
unit sphere and are therefore also called spherical surfaces.
Locally isometric means: if we make the Sievert-Enneper
Surface from a thin sheet of metal (which should suggest
that we can deform the surface by bending without stretch-
ing), we can take the surface by its tails and wrap it around
the equator of the unit sphere; it will bend into the shape
of the sphere, but it is not big enough to cover the whole
sphere. Choose extreme values, e.g. aa = 0.05, aa = 30; in
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the latter case large portions of the surface are already very
spherically shaped, but the holes are always there. So one
may wonder why one does not extend Sievert’s surface be-
yond its boundary. A similar phenomenon can more easily
be explained for those K = 1 surfaces of revolution which
have their equator longer than that of the unit sphere (and
which are obtained in 3DXM by setting cc > 1 in the Set
Parameters Dialog). They, too, have holes instead of polar
regions. In this case one can see from the formulas that
the meridians are more and more strongly curved as their
distance from the equator increases; the holes cannot be
closed because the curvature of the meridians becomes ∞
at the rim of each hole.

The Sievert-Enneper Surface has even more in common
with these K = 1 surfaces of revolution. As with them the
parameter lines are principal curvature directions. This
means that the surface is least strongly, respectively most
strongly, curved in the directions of the two parameter
lines through any point. On a surface of revolution these
principal curvature lines are planar curves, the meridians
and the latitudes. The infinitely long parameter lines of the
Sievert-Enneper surface are also planar curves, and these
planes all contain the y-axis, the line which is tangent to
the two tails at infinity. (This is clear from the formulas
below because the function Φ depends only on u and not on
v.) The second family of parameter lines on the Sievert-
Enneper Surface (v = const) looks planar also, but this
is not the case. However, as aa becomes very large so



that the surface looks very spherical, one observes that the
two families of parameter lines converge to two orthogonal
families of circles on the sphere. This explains why they
look almost planar.

The formulas for the Sievert-Enneper Surface do not look
very appealing. We write them with the help of three
auxiliary functions:

Φ(u) := −u/
√
aa+ 1 + arctan(

√
aa+ 1 · tanu),

a(u, v) := 2/(aa+ 1− aa sin2 v cos2 u),

r(u, v) := a(u, v)

√
(1 + 1/aa)(1 + aa sin2 u) sin v.

The Sievert-Enneper Surfaces:

x(u, v) := r(u, v) cos Φ(u),

y(u, v) := r(u, v) sin Φ(u),

z(u, v) :=
log(tan(v/2)) + (aa+ 1)a(u, v) cos v√

aa
.
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Surfaces of Gauss Curvature K = 1 *

The 3DXM submenu of the Surface menu contains these
examples:

See first the second page of Surfaces of Revolution
Enneper-Sievert Surface
Spherical Helicoids

It is interesting to deform these surfaces by using the de-
fault morph in each case.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/ Surface Organisation

http://3D-XplorMath.org/


Pseudospherical Surfaces

Surface Organisation

( Click the Names )

1.) Introduction to Pseudospherical Surfaces
2.) Dini, Kuen and Breather Surfaces
3.) Surfaces of Revolution
4.) The Pseudosphere from SGE
5.) Surfaces from SGE solutions



About Pseudospherical Surfaces*

If X : M ⊂ R3 is a surface with Gaussian curvature
K = −1, then it is known that there exists a local asymp-
totic coordinate system (x, t) on M such that the first and
second fundamental forms are

I = dx2 + dt2 + 2 cos q dx dt, II = 2 sin q dx dt,

where q is the angle between asymptotic lines (the x-curves
and t-curves). Such coordinates are called Tchebyshef co-
ordinates. The Gauss-Codazzi equations for M in these co-
ordinates become a single equation, the sine-Gordon equa-
tion (SGE)

qxt = sin q. (SGE)

Surfaces in R3 having constant Gauusian curvature K
equal minus one are usually called pseudospherical surfaces
(after the most well-known example, the pseudosphere)
and the so-called Fundamental Theorem of Surfaces gives
us a local correspondence between pseudospherical surfaces
(up to rigid motion) and solutions of SGE. A general pseu-
dospherical surface shares with the pseudosphere the fact
that its intrinsic geometry is a portion of the hyperbolic
geometry of Lobachevsky.

Now classical results of Bäcklund and of Bianchi concern-
ing pseudospherical surfaces provide methods to find many
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explicit solutions of the SGE and construct the correspond-
ing pseudospherical surfaces. In fact, the SGE is one of the
model soliton equations, and these classical methods give
rise to all of the soliton solutions of SGE. We will describe
next a little of this very classical differential geometry.

For surfaces M,M∗ in R3, a diffeomorphism ` : M →M∗

is called a pseudospherical congruence with constant θ if:

(i) the line joining p and p∗ = `(p) is tangent to both M
and M∗,

(ii) the angle between the normal of M at p and the nor-
mal of M∗ at p∗ = `(p) is θ, and

(iii) the distance from p to p∗ is sin θ for all p ∈M .

The following result of Bäcklund is fundamental to the
study of pseudospherical surfaces.

Bäcklund Theorem. Let M,M∗ be two surfaces in R3,
and ` : M → M∗ a pseudospherical congruence with con-
stant θ. Then

(a) both M and M∗ are pseudospherical surfaces,

(b) the Tchebyshef coordinates x, t on M maps to the
Tchebyshef coordinates on M∗ under `,

(c) if q and q∗ are the solutions of SGE corresponding to
M and M∗ respectively, then q, q∗ satisfies{

q∗x = qx + 4s sin( q
∗+q
2 ),

q∗t = −qt + 2
s sin( q

∗−q
2 ),

(BTθ)

where s = tan θ
2 .



Moreover, given q, system (BTθ) is solvable for q∗ if and
only if q is a solution of the SGE, and the solution q∗ is
again a solution of the SGE.

We will call both ` and the transform from q to q∗

a Bäcklund transformation. This description of Bäcklund
transformations gives us an algorithm for generating fam-
ilies of solutions of the PDE by solving a pair of ordinary
differential equations. The procedure can be repeated,
but the miracle is that after the first step, the proce-
dure can be carried out algebraically. This is the Bianchi
Permutability Theorem. Given two pseudospherical con-
gruences `i : M0 → Mi with angles θi respectively and
sin θ2

1 6= sin θ2
2, then there exist an algebraic construction

of a unique surface M3, and pseudospherical congruences
˜̀
1 : M2 → M3 and ˜̀

2 : M1 → M3 with angles θ1 and
θ2 respectively such that ˜̀

2`1 = ˜̀
1`2. The analytic refor-

mulation of this theorem is the following: Suppose q is a
solution of the SGE and q1, q2 are two solutions of system
(BTθ) with angles θ = θ1, θ2 respectively. The Bianchi
permutability theorem gives a third local solution q3 to
the SGE

tan
q3 − q

4
=
s1 + s2

s1 − s2
tan

q1 − q2

4
,

where s1 = tan θi
2 and s2 = tan θ2

2 .

To see how the scheme works, we start with the trivial
solution q = 0 of SGE, then (BTθ) can be solved explicitly
to get

q∗(x, t) = 4 tan−1(esx+ t
s ), (1)



the 1-soliton solutions of SGE. (Here s = tan θ
2 . ) An

application of the Permutability theorem then give the 2-
soliton solutions

q(x, t) = 4 tan−1

(
s1 + s2

s1 − s2

es1x+ 1
s1
t − es2x+ 1

s2
t

1 + e(s1+s2)x+( 1
s1

+ 1
s2

)t

)
. (2)

Repeated applications of the Permutability theorem give
complicated but nevertheless explicit n-soliton solutions.
Note that the parameters s1, s2 in the above formula for
2-solitons are real. But for s1 = eiθ and s2 = −e−iθ, even
though q1, q2 are not real-valued, nevertheless

q3(x, t) = 4 tan−1

(
sin θ sin(T cos θ)

cos θ cosh(X sin θ)

)
(3)

is real and a solution of SGE, where X = x − t, and T =
x+ t are space-time coordinates. This solution is periodic
in T and is called a Breather .

The “surface” corresponding to q = 0 is degenerate and in
fact is a straight line. The surfaces corresponding to

(i) 1-soliton ( formula (1)) with s = 1 is the Pseudo-
sphere,

(ii) 1-soliton (formula (1)) with s 6= 1 is a Dini Surface,

(iii) 2-soliton (formula (2)) contains the Kuen Surface.

(iv) Breather solution (formula (3)) with cos θ a rational
number is a pseudospherical surface periodic in the T
direction.



Even though the breather solution q is periodic in T , the
corresponding pseudospherical surface may not be peri-
odic in T . This is because when we use the Fundamental
Theorem of Surfaces to construct the surface from solu-
tion q of the SGE, we need to solve two compatible ODEs
whose coefficients are given by functions of q and qx. For
Breathers, the solutions of these ODEs are periodic in T
if cos θ is rational.

You will notice that all of the pseudospherical surfaces
shown in the program have obvious singularities. In fact, a
theorem of Hilbert says that the hyperbolic plane can not
be isometrically immersed in R3, and this implies that all
complete pseudospherical surfaces must have singularities.
Although soliton solutions are smooth on the entire (x, t)-
plane, the corresponding pseudospherical surfaces have sin-
gularities where the induced metric becomes degenerate,
i.e., where

det

(
1 cos q

cos q 1

)
= 0.

In other words, a surface corresponding to a global solution
q of SGE will have a singularities along the curves where
q is a multiple of π. Moreover, since the metric has rank 1
there, these surfaces have cusp singularities.

For an elementary and short introduction to soliton theory
and its relation to SGE, see the article by C. L. Terng
and K. Uhlenbeck: Geometry of Solitons, Notices of AMS,
47(2000), 17-25. One may also download the pdf file of



this paper from

http://www.math.neu.edu/∼terng/MyPapers.html
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Three Pseudospherical Surfaces,*

Dini Family, Kuen, Breather

The theory to obtain these surfaces of Gauss curvature
K = −1 is explained in

About Pseudospherical Surfaces.

The construction begins with explicit solutions of the Sine-
Gordon-Equation (SGE). A first and a second fundamental
form are written down in terms of an SGE solution. These
surface data satisfy the Gauss-Codazzi integrability condi-
tions, hence determine immersed surfaces. For the earliest
examples this integration of the surface data could be car-
ried out explicitly. See the quoted text above for more
details.

Parametrization of the Dini surfaces:x
y
z

 (u, v) :=

 u− t(u, v)
r(u, v) cos(v)
r(u, v) sin(v)

 , where

ψ := aa · π, aa ∈ [0.001, 0.999],

aa = 0.5 gives the Pseudosphere,

g(u, v) := (u− v · cos(ψ))/ sin(ψ),

s(u, v) := exp(g(u, v)),

r(u, v) := 2 sin(ψ)/(s(u, v) + 1/s(u, v)),

t(u, v) := 0.5 · r(u, v) · (s(u, v)− 1/s(u, v)).
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Parametrization of the Kuen Surface:

x
y
z

 (u, v) :=



2 cosh(v)(cos(u) + u · sin(u))
cosh(v) · cosh(v) + u · u

2 cosh(v)(−u · cos(u) + sin(u))
cosh(v) · cosh(v) + u · u

v − 2 sinh(v) cosh(v)
cosh(v) · cosh(v) + u · u


Parametrization of the Breather surfaces:

Parameter of the family is aa ∈ (0, 1).
If w :=

√
1− aa2 is rational then the surfaces are periodic.

denom := aa · ((w cosh(aa · u))2 + (aa sin(w · v))2)

x(u, v) := −u+
2(1− aa2)

denom
cosh(aa · u) sin(aa · u)

y(u, v) :=
2w cosh(aa u)

denom
(−w cos(v) cos(w v)− sin(v) sin(w v))

z(u, v) :=
2w cosh(aa u)

denom
(−w sin(v) cos(w v) + cos(v) sin(w v))
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The Pseudosphere*

from a Sine-Gordon solution

The Pseudosphere was first found as a surface of revolu-
tion, with the Tractrix as meridian (see Planar Curves). It
has Gauss curvature K = −1. See:
Constant Curvature Surfaces of Revolution.

Later in the 19th century it was discovered that surfaces
with K = −1 can be constructed from soliton solutions of
the Sine-Gordon Equation (SGE). This is explained in:
About Pseudospherical Surfaces,

which can be obtained from the Documentation Menu.

At about the same time, in 1868, Beltrami proved that
the axiomatically constructed non-Euclidean geometry of
Bolyai and Lobachevsky was the same as the simply con-
nected 2-dimensional Riemannian geometry of Gauss cur-
vature K = −1; for example the Riemannian metric of the
Pseudosphere, extended to the plane: du2 + exp(−2u)dv2.
Their common name today is Hyperbolic Geometry.

The meridians are examples of asymptotic geodesics, a key
notion in hyperbolic geometry. Curves, orthogonal to a
family of asymptotic geodesics are called horocycles in hy-
perbolic geometry. They have infinite length in the simply
connected case, on the Pseudosphere one sees finite por-

* This file is from the 3D-XplorMath project. Please see:
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tions as the latitude circles.

In the theory which relates SGE solutions to surface in R3

of Gauss curvature K = −1, one first writes down the first
and second fundamental forms in terms of such a solution
q(x, t) of SGE:

I = dx2 + dt2 + 2 cos q dx dt, II = 2 sin q dx dt,

The Gauss-Codazzi integrability conditions are satisfied,
because q is an SGE solution. One then obtains the first
parameter line of the surface by integrating an ODE and
the transversal other family by integrating a second ODE.
The first and second fundamental forms above are written
in asymptote coordinates, which means: the normal curva-
ture of the surface in the direction of the parameter lines is
0. (Note that x and t are arc length parameters on the pa-
rameter lines. This leads to the Tchebycheff net mentioned
in “About Pseudospherical Curves”.) Such parametriza-
tions do not offer a good view of the surface. In 3DXM,
therefore, the integration first creates one curvature line of
the surface and secondly the orthogonal family of curva-
ture lines with u = x + t, v = x − t. One can view this
before the surface is shown with these parameter lines.

The SGE solution for the Pseudosphere is:

q(x, t) := 4 arctan(exp(x)).

H.K. TOC



(K = −1) - Surfaces from SGE solitons *

In 3DXM there are six explicit solutions q(x, t) of the Sine-
Gordon Equation (SGE), namely:
One-Soliton, Two-Soliton, Three-Soliton,

Four-Soliton, Kink, Breather.

Each of them determines a pair of first and second funda-
mental forms

I = dx2 + dt2 + 2 cos q dx dt, II = 2 sin q dx dt,

for which the Gauss-Codazzi integrability conditions are
satisfied. This says:
There are parametrized surfaces in R3 with these first and
second fundamental forms. They have Gauss curvature
K = −1. The parameter lines are asymptote lines on these
surfaces and x, t are arclengths on the parameter lines. For
more details see:

About Pseudospherical Surfaces ,
available from the Documentation Menu.

Since pictures of surfaces, drawn with asymptote line para-
metrization, do not give a good 3D-impression of the sur-
face, 3DXM uses instead curvature line parametrizations,
i.e. the parameters u = x + t, v = x − t. One first sees
one curvature line computed as solution of an ODE. Next

* This file is from the 3D-XplorMath project. Please see:
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the family of orthogonal curvature lines is drawn. This
determines the parametrized surface. It is then rendered
according to the viewer’s choice.

Recall the definition cosec := 1/ sin.

The One-Soliton solution of SGE (parameter aa):
q(x, t) = 4 arctan(exp( cosec(aa ·π) ·x−cotan(aa ·π) · t )).
The first drawn curvature line is a planar curve.

The Two-Soliton solution of SGE (parameters aa, bb):
Define a constant B and functions A1, A2 first.
B := (cos(bb π)− cos(aa π))/(cos((aa− bb)π)− 1),
A1(x, t) := cosec(aa π)x− cotan(aa π)t,
A2(x, t) := cosec(BB π)x− cotan(bb π)t, then put:

q(x, t) := 4 arctan( B exp(A2(x,t))−exp(A1(x,t)) )
1+exp( A1(x,t)+A2(x,t) ) .

The Three-Soliton solution of SGE (params aa, bb, cc):
Define three auxiliary functions E,F,H first.
E(ξ, x, t) := exp( cosec(ξ π)x+ cotan(ξ π)t ),

F (ξ1, ξ2, x, t) := cos(ξ1 π)−cos(ξ2 π)
cos((ξ2−ξ1)π)−1 ·

E(ξ1,x,t)−E(ξ2,x,t)
1+E(ξ1,x,t)·E(ξ2,x,t)

,

H(ξ1, ξ2, ξ3, x, t) := cos(ξ1 π)−cos(ξ2 π)
cos((ξ2−ξ1)π)−1 ·

F (ξ1,ξ2,x,t)−F (ξ2,ξ3,x,t)
1+F (ξ1,ξ2,x,t)·F (ξ2,ξ3,x,t)

,

q(aa, bb, cc, x, t) := 4 arctan(exp( cosec(bb π)x+cotan(bb π)t ))
•4 arctan(H(aa, bb, cc, x, t)).

The Four-Soliton solution of SGE (params aa, bb, cc, dd):
Define functions E,F,H (as before) and J,K first.
E(ξ, x, t) := exp( cosec(ξ π)x+ cotan(ξ π)t ),



F (ξ1, ξ2, x, t) := cos(ξ1 π)−cos(ξ2 π)
cos((ξ2−ξ1)π)−1 ·

E(ξ1,x,t)−E(ξ2,x,t)
1+E(ξ1,x,t)·E(ξ2,x,t)

,

H(ξ1, ξ2, ξ3, x, t) := cos(ξ1 π)−cos(ξ2 π)
cos((ξ2−ξ1)π)−1 ·

F (ξ1,ξ2,x,t)−F (ξ2,ξ3,x,t)
1+F (ξ1,ξ2,x,t)·F (ξ2,ξ3,x,t)

,

J(ξ1, ξ2, ξ3, x, t) := H(ξ1,ξ2,ξ3,x,t)+E(ξ2,x,t)
1−H(ξ1,ξ2,ξ3,x,t)·E(ξ2,x,t)

,

K(ξ1, ξ2, ξ3, ξ4, x, t) :=
cos(ξ1 π)−cos(ξ4 π)
cos((ξ4−ξ1)π)−1 ·

J(ξ1,ξ2,ξ3,x,t)−J(ξ2,ξ3,ξ4,x,t)
1+J(ξ1,ξ2,ξ3,x,t)·J(ξ2,ξ3,ξ4,x,t)

,

Finally

q(aa, bb, cc, dd, x, t) :=
4 arctan(F (aa, bb, x, t))+4 arctan(K(aa, bb, cc, dd, x, t)).

The Kink (soliton) solution of SGE (parameter aa):
q(x, t) := 4 arctan( (aa+ 1

4 aa )x+ (aa− 1
4 aa )t ).

With different names of constants these are the same as
the one-soliton solutions above.

The Breather (soliton) solution of SGE (parameter aa):
Abbreviate ω :=

√
1− aa2, then

q(x, t) := 4 arctan( sin(ω t)
ω · aa

cosh(aa x) ).

Recall that each of these solutions determines a first and a
second fundamental form which satisfy the Gauss-Codazzi
integrability conditions. Each parameter line gives a space
curve via an ODE which is determined by the fundamental
forms. Because of the integrability conditions these space
curves fit together to form a surface of Gauss curvature
K = −1.
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Minimal Surfaces

Surface Organisation

About Minimal Surfaces

Explicitly Parametrized Minimal Surfaces

Helicoid-Catenoid (1776)
Scherk, Catalan, Henneberg Surfaces (1835-1865)
Enneper Surfaces
Minimal Inverted Boy Surface

5.) Kusner (Dihedral Symmetric)

Weierstrass’ Minimal Surface Representation

Surfaces parametrized by punctured spheres:
ff -wavy k-fold Enneper Surface
Catenoid - k-fold Enneper
Planar k-fold Enneper
Double k-fold Enneper
Scherk Saddle Towers
Twisted Saddle Towers
Symmetric and Skew k-Noids
The Lopez-Ros No-Go-Theorem
Two Planar And Two Catenoid Ends

Half-Catenoids and Weierstrass Representation
Surfaces parametrized by punctured tori:
Chain of Half-Catenoids and Field of Half-Catenoids
Karcher jd Saddle Towers
Karcher je Saddle Towers
Riemann’s Minimal Surfaces

Continue next page



The Chen-Gackstatter Minimal Surface
Costa’s Minimal Surface
The Costa-Hoffman-Meeks Minimal Surfaces
Fence of Catenoids
Scherk’s Surface with a Handle
R. Schoen’s No-Go-Theorem

Embedded Triply Periodic Minimal Surfaces (genus ≥ 3):
The Conjugate Plateau Construction
Schwarz’ P-D-Families, with A. Schoen’s Gyroid
Schwarz’ H-Family, with Lidin’s Lidinoid
Four Triply Periodic Minimal Surfaces
The Fujimori-Weber Surfaces
Userdefined Minimal Surfaces
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About Minimal Surfaces *

Discovery and physical interpretation.

The question which surfaces locally minimize area led La-
grange in 1760 to the minimal surface equation for graphs.
By 1765 Meusnier had found that a geometric interpreta-
tion of this equation is: the mean curvature of the surface
vanishes. He discovered that the catenoid and the heli-
coid are nonplanar examples. It took until 1835 for the
next examples to appear, discovered by Scherk; his dou-
bly periodic surface is a graph over the black squares of a
checkerboard tesselation of the plane and his singly peri-
odic surface is nowadays viewed as a desingularization of
two orthogonally intersecting planes. In the following years
complex analysis developed and by 1865 many examples
were known through the efforts of Riemann, Weierstraß,
Enneper and in particular Schwarz.

Also in that period Plateau had made careful experiments
with soap films. He convinced people that soap films were
a perfect physical realization of minimal surfaces, and he
convinced mathematicians that they should solve Plateau’s
Problem, i.e. prove that every continuous injective closed
curve in R3 spans a minimal surface. This problem was
solved in 1932 by Douglas and independently by Rado.
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On the way to this solution mathematicians had learnt a
lot about nonlinear elliptic partial differential equations.
In particular the importance of the maximum principle
had become clear, it implies for example that every com-
pact minimal surface is contained in the convex hull of
its boundary and that boundary value problems are well
posed for the minimal surface equation.

On the other hand, although the Cauchy-Kowalewski the-
orem allows to solve locally initial value problems with
analytic data, there is no continuous dependence on the
data and no hope to obtain complete immersed examples
with this method. — But, already Weierstraß had estab-
lished the close connection of minimal surfaces with com-
plex analysis. In particular: the spherical Gauss map com-
posed with stereographic projection is locally a holomor-
phic function G : M2 → C. In terms of the 90◦ rotation
of each tangent space of the minimal surface M2 holomor-
phicity has the following intuitive interpretation: for each
v ∈ TM2 we have the following version of the Cauchy-
Riemann equations

dG(R90 ◦ v) = i · dG(v).

Moreover, the three component functions of the immersion
(F 1, F 2, F 3) : M2 → R3 are, locally, the real parts of
holomorphic functions, because the differential forms

ωj := −dF j ◦R90

are closed for surfaces with mean curvature zero (Meusnier’s
above interpretation of “minimal”). This fact establishes



the Weierstraß representation:

Let G be the holomorphic Gauss map and
dh := dF 3 − i · dF 3 ◦R90

the (holomorphic) complexification of the differ-
ential of the height function F 3 then

(F 1, F 2, F 3) = Re

∫ (
1

2
(

1

G
−G),

i

2
(

1

G
+G), 1

)
dh.

The examples of the second half of the 19th century were
made with this representation. But results, achieved by
1960 by Huber and Osserman show, that all minimal sur-
faces of a certain kind can be obtained by a global appli-
cation of this representation, namely:

Complete, immersed minimal surfaces of finite total cur-
vature can be conformally compactified by closing finitely
many punctures; moreover, the Weierstraß data G, dh
extend meromorphically to this compact Riemann sur-
face.

The wealth of examples, discovered since about 1980, rely
on this theorem. To understand these examples better we
note the first and second fundamental forms (Riemannian
metric and, if |v| = 1, normal curvature)

I(v, v) =
1

4
(

1

|G|
+ |G|)2|dh(v)|2

II(v, v) = Re
dG(v)

G
dh(v).



The points p on the Riemann surface which are poles of dh
do not correspond to points on the minimal surface. Every
(differentiable) curve which runs into such a puncture p has
infinite length on the minimal surface. The same is true
if G has a zero or pole of higher order than the vanishing
order of dh. If these orders are the same then we simply
have a point with vertical normal on the minimal surface.
And at points where the vanishing order of dh is larger,
the metric becomes singular and the minimal surface has
a so called branch point, it is no longer an immersion.

Visualization of minimal surfaces.

The Weierstraß representation allows to write down a num-
ber of simple minimal surfaces which can be visualized like
any other surface for which an explicit parametrization is
given. Our parameter lines come from polar coordinates
with centers {0,∞} or {1,+1}. Note that the zeros and
poles of G, dh fit together so that no branch points oc-
cur and so that the minimal surfaces are complete on the
punctured spheres mentioned in each case. The surfaces
are of finite total curvature, since the Gauss map is mero-
morphic, i.e., its image covers the Riemann sphere a finite
number of times.

First Examples,

defined on C or C \ {0} or S2 \ {1,−1}:



Enneper Surface:

z ∈ C, G(z) := z, dh := zdz

Polynomial Enneper:

z ∈ C, G(z) := P (z), dh := P (z)dz

Rational Enneper:

z ∈ C, G(z) := P (z)/Q(z), dh := P (z)Q(z)dz

P and Q are polynomials without common zeros.

Vertical Catenoid:

z ∈ C \ {0}, G(z) := z, dh := dz/z,

or G(z) := 1/z

Helicoid:

z ∈ C, G(z) := exp(z), dh := idz = i
dG

G
Helicoid:

z ∈ C \ {0}, G(z) := z, dh := idz/z

Planar to Enneper:

z ∈ C \ {0}, G(z) := zk+1, dh := zk−1dz

Wavy Catenoid:

z ∈ C \ {0}, G(z) := (1 + ε · zk)/z, dh := G(z)dz

Wavy Plane:

z ∈ C \ {0}, G(z) := z, dh := dz

Horizontal Catenoid:

z ∈ S2 \ {1,−1}, G(z) := z, dh :=
dz/z

(z − 1/z)2
.





All of these simple minimal surfaces have symmetries: (i)
straight lines on a minimal surface allow 180◦ rotations of
the minimal surface into itsself, and (ii) planar geodesics
on a minimal surface allow reflection (in the plane of the
geodesic) of the minimal surface into itsself. Since these
symmetries become more important for understanding more
complicated surfaces one should learn how to recognize
them. The straight lines are geodesics with normal curva-
ture II(c′, c′) = 0 or dG(c′)/G·dh(c′) ∈ i·R. In the present
context we recognize geodesics as fixed point sets of isomet-
ric involutions. The formula for the first fundamental form
is so simple that one can easily see in all of these examples
that the expected symmetry indeed does not change the
Riemannian arc length of curves. To recognize the planar
geodesics note that a geodesic on a surface is planar if it
is also a principal curvature line; in addition to seeing it
as the fixed point set of a length preserving involution we
therefore only need to check dG(c′)/G · dh(c′) ∈ R, which
is also easy in these examples.
In 3D-XplorMath one can easily change (in the Settings
Menu) the range of the parametrization and also the sym-
metry of the surface. We recommend that the surfaces
are looked at from far away when a large range for the
parametrization is chosen. We also recommend to look at
the default morphs of WavyEnneper and WavyCatenoid
since it is quite surprising how suddenly the perturbation
becomes visible. This should be taken as an illustration
that the initial value problem for minimal surfaces is highly



unstable, it is ill posed and no numerical solution is possi-
ble.

More complicated spherical examples.

The sudden increase of the interest in minimal surfaces
after 1980 was largely caused by the discovery of a quite
unexpected embedded finite total curvature minimal sur-
face by Costa with embeddedness discovered and proved by
Hoffman-Meeks. We are not yet close to such an example
because of the following

Theorem of Lopez-Ros. An embedded, minimal, finite total
curvature punctured sphere is a plane or a catenoid.

To practise using the Weierstraß representation we there-
fore have to be content with a few immersed punctured
spheres. We want to learn how to see the Gauss map when
one looks at the picture of such a minimal surface. The
main fact to use is: a meromorphic function on a compact
Riemann surface is determined up to a constant factor by
its zeros and poles. In the case of the Jorge-Meeks k-noids
one clearly sees a k-punctured sphere with a horizontal
symmetry plane. One observes only two points with verti-
cal normal, one up, one down. The qualitative behaviour
of the Gauss map along the horizontal symmetry line sug-
gests a mapping degree k − 1. This leaves no choice but
G(z) = zk−1. If we look back at the very simple exam-
ples then we can observe that, at a catenoid like puncture,
either Gdh or dh/G has precisely a double pole. This de-
termines the dh below up to a constant factor.



The next two examples, the 4-noid with orthogonal ends of
different size, and the double Enneper, have a quite differ-
ent appearance, but they have the same Gauss map. The
vertical points are symmetric with respect to the origin and
symmetric with respect to the unit circle, and the degree of
the Gauss map is three; this determines the Blaschke prod-
uct expression below. In the case of the 4-noid we need to
create the four catenoid ends with double poles of dh and
we need to compensate the simple zeros and poles of G by
simple zeros of dh; then, if we also treat zero and infinity
symmetrically, the expression below is forced. In the case
of the double Enneper surface we just need to compensate
the simple zeros and poles of G (outside 0,∞); symmetric
treatment of 0,∞ gives the dh below (except for a constant
factor).
The last example illustrates in which way attempted counter
examples to the Lopez-Ros theorem fail. A residue com-
putation for the Weierstraß integrands shows that closed
curves around the punctures ±1 on the sphere are not
closed curves on the minimal surface, if we want all limit
normals to be vertical. It is easy to close this so called
period when one allows tilted catenoid ends, but, as one
decreases the tilt, the distance between the half catenoids
increases, and they intersect the planar middle end if one
computes the surface far enough towards the punctures.

The k-noids of Jorge-Meeks:

z ∈ S2 \ {e2πi·l/k; 0 ≤ l < k},
G(z) := zk−1, dh := (zk + z−k − 2)−1 · dz/z.



4-noids with two different orthogonal ends:

z ∈ C \ {0,−1,+1}, G(z) := z · z−r1−rz ·
z+r
1+rz ,

dh :=
(

1− z2+z−2

r2+r−2

)
· (z2 − z−2)−2 · dz/z.

Two Enneper ends joined by a catenoidal neck:

z ∈ C \ {0},

G(z) := z · z−r1−rz ·
z+r
1+rz , dh :=

(
1− z2+z−2

r2+r−2

)
· dz/z.

Three punctures, period closes for tilted ends:

z ∈ C \ {−1,+1},
G(z) := ρ(z2 − r2), dh := z2−r2

(z2−1)2 dz.

Observe that the zeros and poles of the Gauss map which
are not in the list of punctures are compensated by zeros
of dh. At the embedded ends, Gdh or dh/G have a dou-
ble pole and at the Enneper ends they have higher order
poles. — In this list we do not have simple poles of Gdh
and dh/G. If this happens then the Weierstraß integral
behaves similar to

∫
dz/z: the unit disk, punctured at 0,

is mapped by log to an infinite number of half strips par-
allel to the negative real axis and of width 2π. Similarly,
the Weierstraß integral produces simply periodic embedded
minimal surfaces parametrized by punctured spheres.

Generalized Scherk Saddle Towers:

z ∈ S2 \ {e±φ · e2πi·l/k; 0 ≤ l < k},
G(z) := zk−1, dh := (zk + z−k − 2 cos kφ)−1 · dz/z.





As in the simpler examples, observe that the symmetry
lines can be seen from the Weierstraß data. We also note
that at this point an important decision has to be made. If
one represents the surfaces, as in all our examples, with pa-
rameter lines then each surface requires a special effort so
that the parameter lines on the one hand support the com-
plex analytic background of the minimal surface and on the
other hand suggest correctly how one should imagine how
the surface extends beyond what the picture shows. In 3D-
XplorMath this individual approach has been taken. The
other option is to spend considerably more general effort
by writing software which will create a suitable triangu-
lation of the domain. David and Jim Hoffman have such
a program running. It requires much less individual work
to compute another minimal surface but it is harder to il-
lustrate the complex analysis background of the computed
minimal surface.

The family of singly periodic embedded minimal surfaces
which resemble the above generalized Scherk Saddle towers
is much larger than the above explicit formulas suggest. So
far we have only talked about the real part of the Weier-
straß integral. In fact, a 1-parameter (“associate”) family
of isometric (and in general not congruent) minimal sur-
faces are given by this integral because dh can be changed
by the factor exp(−2πiϕ). In particular, the imaginary
part of the Weierstraß integral is the “conjugate” minimal
surface. In the case of the generalized Scherk saddle towers
we have that the conjugate minimal immersion maps the



unit disk (with the punctures on the boundary) to a graph
over a convex polygon; its edge lengths all agree. The min-
imal graph has over each edge the boundary value +∞ or
−∞, alternatingly. — Jenkins-Serrin proved the converse:
every such infinite boundary value problem has a graph
solution, a minimal disk whose conjugate minimal surface
is the fundamental piece of an embedded singly periodic
saddle tower.

Having seen a good collection of minimal surfaces parame-
trized by punctured spheres we now turn to minimal sur-
faces parametrized by other Riemann surfaces. (To be
written)
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The Helicoid - Catenoid Family*

Lagrange found in 1762 the minimal surface equation as
Euler-Lagrange equation for the area minimization prob-
lem. Geometrically, this equation means that the mean
curvature is 0. He found no other solution than the plane.
In 1776 Meusnier discovered that the Helicoid and the
Catenoid are also solutions. The next solutions were found
60 years later by Scherk.

The Helicoid (aa = 0) – Catenoid (aa = 1) Family:

x(u, v) := cos(aa · π/2) sin(u) sinh(v)+

sin(aa · π/2) cos(u) cosh(v))

y(u, v) := cos(aa · π/2) cos(u) sinh(v)+

sin(aa · π/2) sin(u) cosh(v)

z(u, v) := cos(aa · π/2) · u+ sin(aa · π/2) · v

These formulas describe, for each aa, a minimal surface.
Moreover, these surfaces are all isometric to each other;
their Riemannian metrics, in the given parametrization, all
have the same expression. The parameter lines u = const
on the Helicoid (aa = 0) are straight lines and no other
minimal surface is such a ruled surface. The Catenoid
(aa = 1) is the only minimal surface of revolution. These
two are the only embedded surfaces in the aa-family.
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The isometric aa-deformation is very fascinating, use Cyclic
Morph in the Animation Menu. The small parameter squares
do not change size or shape during the deformation, they
just get bent a little. If the two sides of the surfaces are
colored differently and aa varies from aa = 1 to aa = 3,
one can observe that the Catenoid is turned inside out.
The deformation period is 4 and really amazing to watch.
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Minimal Surfaces of Catalan, Henneberg, Scherk*

These surfaces are early discovered minimal surfaces. They
were found as explicitly parametrized surfaces, while soon
afterwards variations of the Weierstrass representation be-
came the main tool of description. This changed again in
the early 1930s when Douglas and Rado solved the Plateau
Problem with Functional Analysis methods. The Weier-
strass representation had, after the work of Ossermann, a
comeback in the 1980s.
Scherk’s doubly periodic minimal surface (1835):

x(u, v) :=
u

bb
, y(u, v) :=

v

bb
z(u, v) :=

1

bb
ln(

cos(v)

cos(u)
).

Catalan’s minimal surface (1855), associate family:

x(u, v) :=
1

bb
( cos(aa · π)(u− sin(u) cosh(v))+

sin(aa · π)(v − cos(u) sinh(v))− 4)

y(u, v) :=
1

bb
( cos(aa · π)(1− cos(u) cosh(v))+

sin(aa · π) sin(u) sinh(v))

z(u, v) :=
1

bb
( cos(aa · π)4 sin(u/2) sinh(v/2)+

sin(aa · π)4 cos(u/2) cosh(v/2)).
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Henneberg’s minimal surface (1875), associate family:

caa :=
2 cos(aa · π)

0.01 + |bb|
, saa :=

2 sin(aa · π)

0.01 + |bb|

x(u, v) :=caa · (sinh(u) cos(v)− 1

3
sinh(3u) cos(3v))

+saa · (cosh(u) sin(v)− 1

3
cosh(3u) sin(3v))

y(u, v) :=caa · (sinh(u) sin(v) +
1

3
sinh(3u) sin(3v))

+saa·(− cosh(u) cos(v)− 1

3
cosh(3u) cos(3v) +

4cc

3
)

z(u, v) :=caa · (cosh(2u) cos(2v)− cc)
+saa · sinh(2u) sin(2v)

u ∈ R, v ∈ [−π, π], a cylinder domain.

The default value of the translation parameter, cc = 0,
puts the symmetry point of Henneberg’s surface at the
origin. If one wants to scale up a neighborhood of the
branch point at u = 0, v = 0, use cc = 1 to put that
branch point at the origin and make use of the scaling
parameter bb in the denominator.

Scherk’s discovery of the above doubly periodic surface, of
its singly periodic conjugate surface and of three less spec-
tacular ones was a sensation since the only other known
minimal surfaces, the catenoid and the helicoid, were al-
ready 50 years old. Scherk’s surfaces were destined to play
a major role in the discovery period after 1980.



Catalan’s surface was next, 20 years later. This slow prog-
ress reflects the fact that no methods for the construction
of minimal surfaces were known. This changed with Rie-
mann, Weierstrass, Enneper and finally Schwarz. Their
methods built on complex analysis and allowed to write
down arbitrarily many examples. Therefore the emphasis
shifted to examples that had additional properties. In par-
ticular complete, embedded minimal surfaces were sought.
Quite a few triply periodic embedded ones were found,
but it took another 100 years before the next embedded
finite total curvature example after the catenoid was con-
structed: Costa’s example, a minimal embedding of the
thrice punctured square torus.
Henneberg’s minimal surface was studied a lot because of
its two branch point singularities (on the z-axis). Such sin-
gularities are difficult to imagine and Henneberg’s surface
is a simple example to exhibit them. The default image
in 3DXM shows a small neighborhood of the two branch
points. The segment between them is a selfintersection line
of the surface. The lines {x = ±y, z = 0} lie also on the
surface. 180◦ rotation around any of these straight lines
is a symmetry of the surface and the conjugate surface
has, correspondingly, the three planes which pass through
the origin and are orthogonal to one of these three lines,
as symmetry planes. - Note: The conjugate surface has
twice the area of Henneberg’s surface. This is because
Henneberg’s surface is covered twice. For about 100 years
it was the only known non-orientable minimal surface.



The last entry in the Action Menu emphasizes a Möbius

band on Henneberg’s surface. The default morph is the
associate family morph.
The Range Morph (from the Animate Menu) shows larger
and larger pieces of the surface - scaled down to fit on the
screen. One can see still larger portions by increasing uMax

beyond 0.95. (Choose b1 > 1 to compensate for the grow-
ing size.)
A third morph expands a band around the two branch
points and moves it over the surface.
The parameter line u = 0, v ∈ [−π, π] is a symmetry
line of the domain cylinder. It is mapped to the segment
between the branch points on the z-axis and 180◦ rotation
around it is a symmetry of the surface. The two lines v = 0
and v = π are also symmetry lines of the domain cylinder.
They are mapped to curves of reflectional symmetry, re-
flection in the x-z-plane. They end in the branch points
like a Neil parabola, {x3 = z2}.
H.K. TOC



About the Classical Enneper Surface *

and some Polynomial Relatives

See also: About Minimal Surfaces

Definition with explicit formulas

The classical Enneper Surface is a minimal immersion of
the complex plane, C, into Euclidean space R3. It is given
by the formula

F (z) := real({z3/3− z, i · (z3/3 + z), z2}).
If one wants to see coordinate lines on the image one can
use Cartesian coordinates for the complex plane, z :=
x + i · y, or polar coordinates z := r · (cosϕ + i · sinϕ),
and map those grids with F . The Cartesian choice is nat-
ural here since its parameter lines are principal curvature
lines. However the polar choice also has merits—namely,
rotations around the origin are isometries and the coordi-
nate lines are orbits. Moreover all symmetry lines of the
surface are radial parameter lines. The Action Menu of
3DXM allows to switch between these parametrizations.
In 3DXM one can also deform this classical surface, but
we need to explain the significance of what one sees. See
the last page of this text.
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Early in the second half of the nineteenth century the
Enneper-Weierstraß representation of minimal surfaces was
discovered. Its main advantage is that it permits one to
write a formula for a minimal surface in terms of important
geometric quantities. Every surface in R3 can be mapped
to the 2-sphere S2 by sending each point on the surface
to the unit normal at this point; this map is called the
geometric Gauß map N . For minimal surfaces this map is
angle preserving, but orientation reversing. Composition
of N with the orientation reversing stereographic projec-
tion therefore gives a map g from the surface into C which
is both and orientation preserving. Finally, if we interpret
90◦ rotation on each tangent space of a surface in R3 as
multiplication of tangent vectors by i, then with this con-
vention g becomes a meromorphic function, the meromor-
phic Gauß map of the minimal surface. This meromorphic
Gauß map is one-half of the Weierstraß data which are
needed to write down the Enneper-Weierstraß representa-
tion. The remaining part of these data is the differential
dF 3 of the third component of F , i.e., of the height func-
tion on the minimal surface. It might seem at first that we
must know a minimal surface rather well before we have its
Weierstraß data. However, on a large class of geometrically
important minimal surfaces the situation is simple indeed.
If a minimal surface is complete and has finite total curva-
ture then the Gauß map g is determined—up to a constant
factor—by its zeros and poles, in other words by its vertical
normals. This important result extends to differentials, in



particular to the differential of the height function, after
we perform a small trick, namely extend the real valued
differential dF 3 to a complex valued one by putting for
every tangent vector v of the surface

dh(v) := dF 3(v)− i · dF 3(i · v)

:= dF 3(v)− i · dF 3(Rot90(v)).

To make matters even simpler, observe that the points on
the surface, where the normal is vertical, are the same
points where the differential of the height function is zero.
More precisely, the zeros and poles of g on the minimal
surface are precisely the zeros of dh, even with the same
multiplicity. (To complete this discussion we would have to
study the situation at infinity, but we will omit this.) The
main point is to point out that very few, finitely many, data
about such minimal surfaces suffice to find their Weierstraß
data and therefore explicitly parametrize them. Here is
this famous formula:

Weierstraß Representation in terms of g, dh:

F (z) := Re

(∫ z

∗

{
1

2

(
g − 1

g

)
dh,

i

2

(
g +

1

g

)
dh, dh

})
The classical Enneper surface is obtained if we put g(z) =
z, dh = zdz.
This generalizes to polynomials P (z), put:
g(z) = P (z), dh = P (z)dz.



3DXM allows P (z) := aa · z + bb · z2 + cc · z3.

The pure powers have again the rotations around the origin
as metric isometry group and polar coordinates provide a
much better view of these surfaces and are recommended.
All surfaces of the associate family are, for g(z) = zk, con-
gruent. There are straight lines on the surface, and if one
looks in the direction of the z-axis onto the surface, then
the portion below these lines is drawn first. The default
morph deforms two such surfaces into each other.
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A Minimally Immersed Projective Plane *

See first: About Minimal Surfaces

This minimal surface is remarkable because its associate
family contains an immersion of the triply punctured pro-
jective plane. It was discovered independently by Rob Kus-
ner and Robert Bryant. It is also an example where the
Weierstraß data can be explicitly integrated to a rational
parametrization of the surface:

W1(z) =
i(z2 − z−2)

z3 − z−3 +
√

5
=

i(z5 − z)
z6 − 1 +

√
5z3

W2(z) =
z2 + z−2

z3 − z−3 +
√

5
=

z5 + z

z6 − 1 +
√

5z3

W3(z) =
2i
3 (z3 + z−3)

z3 − z−3 +
√

5
− 2i

3
=

2i

3

(
z6 + 1

z6 − 1 +
√

5z3
− 1

)
The associate family is Fϕ(z) := Re(eiϕW (z)).
Note the antipodal symmetry W (−1/z̄) = W (z), which
says that F0 = Re(W ) = −Fπ is an immersion of the punc-
tured projective plane. The poles of W are at the six zeros

of the denominator, with a3 = 3−
√

5
2 , a ≈ 0.72556 they are

(a,−1/a) · (1, e2πi/3, e−2πi/3), three antipodal pairs.
The above formulas indeed represent minimal surfaces since

W ′1(z) +W ′2(z) +W ′3(z) = 0.

This is expressed as: z 7→W (z) is a holomorpic null curve.
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We also give the Weierstrass data:

g(z) =
z2(z3 −

√
5)√

5 z3 + 1
, with g(−1/z) = −1/g(z),

dhz =
2iz2(z3 −

√
5)(
√

5 z3 + 1)

(z6 − 1 +
√

5 z3)2
dz

For parameter lines we use conformal polar coordinates
z = exp(u + iv). A band −0.2 < u < 0, 0 ≤ v ≤ 2π is
mapped to a minimal Möbius band, see the Action Menu.

Near the punctures the minimal surfaces Fϕ are asymptotic
to planes. One says: these minimal surfaces have planar
ends. At such planar ends g · dh or 1/g · dh must have a
double pole and g must have a branch point, i.e. g′(z) = 0
for finite z. Indeed, one can check that g′(z0) = 0 at the
zeros z0 of the denominator of dh.

Planar ends have the following nice property: Invert the
minimal surface in some sphere. Its planar ends invert to
surface pieces with one-point holes. These holes can be
smoothly closed. This gives immersions of the complete
projective plane by inverting the minimal surface F0 and
closing the holes of its three inverted ends. The point at
infinity inverts to a triple point of such immersions. These
immersions are called Boy Surfaces since a topological
version was constructed in Boy’s PhD thesis under Hilbert.
It was the first immersion of the projective plane into R3.
A model stands in front of the Oberwolfach Institute.
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About Wavy Enneper *

The surfaces Wavy Enneper, Catenoid Enneper, Planar
Enneper, and Double Enneper are finite total curvature
minimal immersions of the once or twice punctured sphere—
shown with standard polar coordinates. These surfaces il-
lustrate how the different types of ends can be combined
in a simple way.
Morphing (0 ≤ bb ≤ 2) Wavy Enneper rotates a high or-
der Enneper perturbation (amplitude = aa, frequency=ff)
over the ee tongues of a lower order Enneper surface. Note
how the perturbation decreases quickly with the distance
from the boundary.
aa=0, ee=2 gives the standard Enneper surface.
Gauss map :

Gauss(z) = zee−1(1 + aa exp(iπbb)zff )/(1 + aa)

Differential:

dh = scaling ·Gauss(z) dz

The pure Enneper surfaces (aa = 0) and the Planar En-
neper surfaces have been re-discovered many times, be-
cause the members of the associate family are congruent
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surfaces (as can be seen in an associate family morphing)
and the Weierstrass integrals integrate to polynomial (re-
spectively) rational immersions. Double Enneper was one
of the early examples in which I joined two classical sur-
faces by a handle; we suggest to morph the size of the
handle or the rotational position of the top Enneper sur-
face against the bottom Enneper surface.
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About Catenoid Enneper *

The surfaces Wavy Enneper, Catenoid Enneper, Planar
Enneper, and Double Enneper are finite total curvature
minimal immersions of the once or twice punctured sphere—
shown with standard polar coordinates. These surfaces il-
lustrate how the different types of ends can be combined
in a simple way.
Here an Enneper perturbation with ee tongues (size ad-
justed with aa) crumples one rim of a catenoid in the sug-
gested morphing. It is also interesting to choose aa=0.65,
ee=13, or so. The catenoid is aa=0.
Gauss map : Gauss(z) =

(
4− aa(1 + zee)

)
/z

Differential: dh = (1 + aa2/2) ·Gauss(z) dz.
The pure Enneper surfaces (Gauss(z) = zk ) and the Pla-
nar Enneper surfaces have been re-discovered many times,
because the members of the associate family are congruent
surfaces (as can be seen in an associate family morphing)
and the Weierstrass integrals integrate to polynomial (re-
spectively) rational immersions. Double Enneper was one
of the early examples in which I joined two classical sur-
faces by a handle; we suggest to morph the size of the
handle or the rotational position of the top Enneper sur-
face against the bottom Enneper surface.

H.K. TOC
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About Planar Enneper *

The surfaces Wavy Enneper, Catenoid Enneper, Planar
Enneper, and Double Enneper are finite total curvature
minimal immersions of the once or twice punctured sphere—
shown with standard polar coordinates. These surfaces il-
lustrate how the different types of ends can be combined
in a simple way.
The pure Enneper surfaces (aa = 0, dd = 0 ) and the Pla-
nar Enneper surfaces (aa = 0, dd = 2 ) with Weierstrass
data:
Gauss map : Gauss(z) = zee+1(1 + aa zff )
Differential: dh = scaling ·Gauss(z)/zdd dz
have been re-discovered many times, because the members
of the associate family are congruent surfaces (as can be
seen in the interesting associate family morphing!!) and
the Weierstrass integrals integrate to polynomial (respec-
tively rational) immersions. For aa = 0, dd = 1 one does
not obtain a finite total curvature surface, but a periodic
surface that looks like a halfplane with periodically at-
tached Enneper pieces. One obtains larger pieces of this
Wavy Plane if one either increases ee or the range of v.
The members of the associate family are also congruent,
try Cyclic Associate Family Morph.
For small aa =/ 0 one has wavy perturbations of the En-
neper end.
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For the (aa = 0)-examples ee is an integer valued param-
eter that determines the degree of dihedral symmetry of
the surfaces. Morphing the range of u helps to imagine
these surfaces by starting with a plane minus a disk and
then observe how an Enneper end is attached. In the Set
Morphing Dialog first press Initiate to current parameters,
then choose umax0 = −0.5, umax1 = 0.6.
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About Double Enneper *

The surfaces Wavy Enneper, Catenoid Enneper, Planar
Enneper and Double Enneper are finite total curvature
minimal immersions of the once or twice punctured sphere—
shown with standard polar coordinates. These surfaces il-
lustrate how the different types of ends can be combined
in a simple way.
The pure Enneper surfaces (Gauss(z) = zk, dh = Gauss(z) dz)
and the Planar Enneper surfaces

(Gauss(z) = zk, dh = Gauss(z)/z2 dz)
have been re-discovered many times, because the mem-
bers of the associate family are congruent surfaces (as can
be seen in an associate family morphing) and the Weier-
strass integrals integrate to polynomial (respectively) ra-
tional immersions. Double Enneper was one of the early
examples in which I joined two classical surfaces by a han-
dle. The Weierstrass data are:

Gauss map :

Gauss(z) = zee−1(zee −Aee)/(Aeezee − 1)

Differential:

dh = eiϕ(1− (zee − z−ee)/(Aee −A−ee)) dz/z.

with A =
√
aa · exp(iα), α = πbb/ee

and (Aee + A−ee) tanϕ = −(Aee − A−ee) tan 2α. The last
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equality is needed to avoid periods of the Weierstrass in-
tegral.
In this example the parameter aa controls the size of the
neck between the top and bottom Enneper ends (it should
be kept in the range 3 < aa < 7). The parameter bb ro-
tates the top and the bottom ends relative to each other,
The integer parameter ee = 2, 3,... determines the wind-
ing number of the Enneper ends and also the rotational
symmetry of the surface—the default is ee = 2. And umin
and umax control how far into the ends one computes.
Try a Cyclic Morph with the default parameters (this ro-
tates the upper and lower ends in opposite directions). We
also suggest morphing the size (aa) of the handles. If the
ends intersect too much (e.g. for too large u-range or too
large ee) one has to reduce the u-range. The Cyclic Morph
is also interesting for large ee, for example ee = 12, umin =
−1.45, umax = 1.5 and reduced scaling.
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About the Saddle Tower Surface *

These examples generalize Scherk’s conjugate pair of singly-
periodic/doubly-periodic minimal surfaces. The singly-
periodic examples stay embedded if the dihedral symme-
try (and with it the number of punctures) is increased
(Gauss(z) = zk, k = ee − 1). The most symmetric ones
(bb=0.5/ee) can be deformed by decreasing bb. See [K1],
[K2] for more details.
These surfaces are parametrized by punctured spheres, but
the Weierstrass integrals have periods, a vertical one in the
singly periodic case, two horizontal ones for doubly peri-
odic surfaces. The parameter lines extend polar coordi-
nates around the punctures to the whole sphere—in these
cases giving level lines on the surfaces.
The degree of dihedral symmetry is, of course, a discrete
property, and it is controlled by the parameter ee. Thus,
ee should be set to an integer (the default is 2). For each
choice of ee, changing bb gives a one-parameter family of
surfaces, of which the most symmetric member is obtained
by setting bb = 0.5/ee. Try setting ee to 3 and 4, and
bb to 0.333 and 0.25 respectively. The wings of the singly
periodic saddle tower surfaces become parallel in pairs if
(for ee > 2 ) one sets bb = 0.0825. These stay embedded
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for ee=3 and ee=4.

We also recommend viewing the associate family mor-
phing.

[K1] H. Karcher, Embedded minimal surfaces derived
from Scherk’s examples, Manuscripta Math. 62 (1988) pp.
83–114.
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The Twisted Saddle Towers *

The Twisted Scherk Saddle Towers are minimal surfaces
that were found in 1988 as deformations of the Scherk Sad-
dle Towers. Therefore one should first look at these latter
simpler surfaces. One can imagine that one grips such a
saddle tower at the top and the bottom and deforms the
surface by twisting it. Of course it is not clear whether
this can be done in such a way that the deformations stay
minimal.

Fortunately, the most symmetric Scherk Saddle Towers
carry straight lines through their saddles, and it is easy
to imagine these lines staying on the twisted surface and
remaining as lines of symmetry. Using these lines we can
obtain the existence of the desired surfaces by solving the
following Plateau Problem.

Consider a pair of adjacent half-lines through one saddle
and another pair of half-lines, starting from the saddle
above the first and with one of its half-lines vertically above
the sector between the first two. These two “broken lines”
cut a simply connected strip out of the surface. (One can
see it by selecting “Don’t Show Reflections” from the Ac-
tion Menu).

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/ TOC

http://3D-XplorMath.org/


Now, vice versa, start with the two broken-lines and solve
the Plateau problem for this infinite boundary to find a
minimal strip they bound. Finally use 180◦ rotations around
the half-lines to extend the Plateau strip to a complete
minimal surface, a Twisted Scherk Saddle Tower. These
surfaces played an important role in the development of
the theory of minimal surfaces since—except for the Heli-
coid itself—they were the first examples having helicoidal
ends,

The integer parameter ee controls the dihedral rotational
symmetry of the surface: the angle of each pair of half
lines above is π/ee. The parameter aa controls the amount
of twist, with aa = 0 giving the straight Scherk Saddle
Towers. We must keep aa < π/ee , since otherwise the
existence construction fails. Of course the default morph
varies aa.

In 3D-XplorMath minimal surfaces are computed via their
Weierstraß representation. The Scherk Saddle Towers are
parametrized by punctured spheres and our twist deforma-
tion does not change this conformal type. However, due
to this twist, the Gauß map of the surface is not single-
valued: it is a rather a multivalued function on the punc-
tured sphere, and this makes the computation more dif-
ficult than for the other spherical minimal surfaces, since
during the integration of the multivalued Weierstraß inte-
grand, it is necessary to use analytic continuation in order
to guarantee that we always have the correct value of the



Gauß map.

The Weierstraß representation is given in:

Karcher, H., Embedded Minimal Surfaces derived from
Scherk’s Examples, Manuscripta math. 62 (1988), pp. 83
- 114.

Recently Traizet and Weber have found a new construc-
tion of embedded singly periodic minimal surfaces that
can be illustrated with the twisted Scherk saddle towers.
Choose aa close to its theoretical limit 1/ee and try to
see the resulting surfaces as made out of ee ordinary he-
licoids. Obviously one has to allow modifications of the
helicoids in the middle, but away from the middle one can
see these helicoids well. Traizet and Weber were able to
turn this observation around. They found conditions how
to place a collection of helicoids so that they could prove
the existence of a family of singly periodic embedded min-
imal surfaces which converged to the given helicoids in the
same sense as the twisted Scherk saddle towers converge
as aa→ ±1/ee.
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Symmetric and Skew-symmetric k-Noids *

The symmetric and skew k-noids are parametrized by k-
punctured spheres. The number k of ends is selected with
the 3DXM parameter ee. We use parameter lines that
extend polar coordinates around the punctures. Formu-
las are taken from [K2]. These formulas easily allow to
change the relative size of neighboring catenoid ends for
the symmetric 2k-noids, try the default morph which
varies the 3DXM parameter aa in [0, 1]. The symmetric
k-noids, where the number k of ends is odd, cannot be de-
formed in 3DXM.
The ends of the skew-symmetric k-noids in 3DXM are
all of the same size. The default morph varies the angle
between neighboring ends, again by changing the 3DXM
parameter aa in [0, 1].
The size of the ends is always controlled using bb.

The intersection of the two families are the symmetric k-
noids with all ends of the same size, a family found by Jorge
and Meeks. Their k-noids are the first finite total curva-
ture immersions for which the Weierstrass data were man-
ufactured to fit a previously conceived qualitative global
picture of the surfaces.
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The default morph of the symmetric 2k-noids ends at sym-
metric k-noids with k punctures as aa goes to zero.
In the default morph of the skew-symmetric k-noids the an-
gle between neighboring pairs of ends goes to zero. Near
the limit the 4-noid looks like a pair of parallel catenoids
that are joined by a very thin “catenoidal” handle. In
fact the picture looked so suggestive that it convinced
David Hoffman immediately that the idea of adding han-
dles might be promising in a wide range of situations. Try
this default morph!

H.K. TOC



About the Lopez-Ros No-Go Theorem *

The Lopez-Ros Theorem [LR] says that a complete, mini-
mal embedding of a punctured sphere is either a Catenoid
or a plane. Our example is parametrized by a 3-punctured
sphere. Its Gauss map is Gauss(z) := cc(z−1)(z+1). The
differential dh = (z2 − 1)/(z2 − ee)2 puts the punctures
at +ee, −ee and ∞. Parameter lines on the sphere ex-
tend polar coordinates around the punctures at z = +ee,
z = −ee, z =∞ in order to make the ends look nice.

A necessary condition for embeddedness is that the nor-
mals of all ends are parallel, i.e., ee = 1. In this case
a residue computation shows that the period cannot be
closed, in agreement with the theorem of Lopez-Ros. If
ee > 1, then cc can be chosen to close the period, but
then the catenoid ends are tilted so that they intersect the
third (planar) end. The default morph in 3DXM shows
what happens when ee approaches 1 while the periods are
always closed (with a closing value of cc that grows to in-
finity). In a properly scaled picture the surface looks more
and more like two catenoids at larger and larger distance.
Since we also want to show morphs were the period opens
up, the program uses cc as follows: If the user sets cc = 0
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then the program recomputes cc to the period-closing value
ccclose. Otherwise we only restrict cc by resetting it as

cc = max(0.5 · ccclose,min(cc, 2 · ccclose)).
To choose one’s own morph, note that the surface has a
gap if cc is larger than ccclose, and that it intersects itself
if cc is smaller than ccclose. As an example, compute first
with ee = 1.01, cc = 0; then, in the Set Morphing Dialog,
click the button Initialize to current parameters, and fi-
nally morph ee from the current value ee0 = 1.01 to some
larger value, e.g. ee1 = 1.08.

[LR] F.J. Lopez and A. Ros, On embedded complete min-
imal surfaces of genus zero, Journal of Differential Geom-
etry 33 (1), 1991, pp 293–300.
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Two Planar And Two Catenoid Ends *

This Minimal surface is parametrized by a sphere with four
punctures. In the complex plane its Weierstrass data are

gaus(z) :=
z − a
a z + 1

· z2, dh :=
z − 1/z − a+ 1/a

(z − 1/z − c+ 1/c)2
· dz
z
.

The Gauss map has a simple zero and pole at a and −1/a.
These are finite points on the minimal surface since they
are cancelled by the simple zeros of dh at a,−1/a. And
the Gauss map has a double zero and pole at 0,∞. These
give planar ends because dh is neither 0 nor ∞ there. The
double poles of dh at c,−1/c give catenoid ends because
the Gauss map has simple finite values there - see About

Minimal Surfaces in the Documentation Menu.
Catenoid ends usually come with a period. A residue com-
putation shows that the choice a := c − 1/c makes the
period of the real part of the Weierstrass integral zero.
Note that the Weierstrass data are symmetric with respect
to 180◦ rotation around i, −i. This corresponds to a 180◦

rotation of the minimal surface around the y-axis in R3.
Recall that the Lopez-Ros theorem states that the only
complete embedded minimal surfaces that are parametrized
by punctured spheres (and have finite total curvature) are
the plane and the catenoid.
One can view the shape of the current surface as made
from two copies of our Lopez-Ros-No-Go example by stack-
ing these above each other and deforming the two half
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catenoids between them into the handle of the current sur-
face between its two planes. The new surface is therefore
another failing attempt of a counter example to the Lopez-
Ros theorem. View in the Animate Menu the morph:
Watch The closed Catenoids Tilt. It shows: The two
catenoid ends get more vertical as c approaches 0, but in
the limit the whole surface degenerates to a doubly covered
plane.
Compare the current surface also to the Riemann minimal
surface. Its shape can be viewed as an infinite stack of
copies of the current surface – again, of course, with the
half-catenoids between adjacent copies deformed into han-
dles which join the copies.
Minimal surfaces look much better when the grid lines in
the parameter domain behave like polar centers around
the punctures. With this in mind, the current surface was
parametrize by the following grid in C:

-5 -4 -3 -2 -1 0 1 2
-3

-2

-1

0

1

2

3
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Half-Catenoids and Weierstrass Representation *

In this text we try to explain, starting from scratch, mini-
mal surfaces parametrized by tori.
We assume from complex analysis roughly the following:
The complex logarithm, log(z), is a multivalued function
with derivative log′(z) = 1/z. One can compute the log-
arithm by integrating the differential form dz/z along a
curve c : [0, 1] 7→ C with c(0) = 1, c(1) = z:

log(z) :=

∫
c

1

ζ
dζ :=

∫ 1

0

c′(t)

c(t)
dt

Of course, the integration path c has to avoid 0. There-
fore one can reach z from 1 in many ways. A basic prop-
erty of such complex line integrals is that their value does
not change if the path is deformed, but with fixed end-
points. Two paths which wind around 0 a different number
of times cannot be deformed into each other and, indeed,
the values of the integrals along the two paths differ by
an integer multiple of 2πi. This number, the value of the
integral from 1 once around 0 and back to 1, is called
the period of the differential form dz/z at its singularity 0.
The real part of this integral has no period, we have:
Re(log(z)) = log |z| for all paths from 1 to z.

Instead of integrating one differential form we can integrate
three, so that the real part of such an integral maps (a piece
of) the complex plane into R3. The image is a surface
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without singularities if the integrand is never (0, 0, 0). If
the integrand has singularities, the integration path has to
avoid them and there may be periods. This means that
the integral gives us not just one image of its domain, but
a periodic repetition of one image. The obtained surfaces
are in general not minimal surfaces, but one is close to
them.

Weierstrass derived the following representation:

Let D ⊂ C be some domain, g : D 7→ C a holomorphic
function and dh a holomorphic 1-form on D. Then:

Fϕ(z) := Re

(
eiϕ ·

∫ z

∗

(1

2
(1/g − g),

i

2
(1/g + g), 1

)
dh

)
maps, for each ϕ, D to a minimal surface piece in R3.

The length of the image of curves c in D can be computed
with the Riemannian metric:

ds =
1

2

(
|g(c(t))|+ 1

|g(c(t))|
)
|dh(c′(t))dt|.

Beyond the metric we do not discuss the differential geom-
etry here. See About Minimal Surfaces for a derivation of
the above Weierstrass representation that starts from the
minimal surface definition. Instead we discuss Weierstrass’
formula.

Since the Riemannian metric does not depend on the pa-
rameter ϕ the above surface pieces are all isometric to each
other (almost never congruent). This is a rare phenomenon



in surface theory. – Zeros of the differential form dh lead to
zeros of dFϕ. Such singularities are called branch points of
the minimal surface. The Riemannian metric shows that
they can be avoided if the function g has a zero or a pole
of the same order as the zero of dh. View branch points
on the Henneberg surface ( Scherk, Catalan, Henneberg).

Stereographic projection between the Gaussian plane C
and the Riemann sphere S2 is an important tool in complex
analysis. Composition of the function g with stereographic
projection is

~N(z) :=
(
2Re(g), 2Im (g), |g|2 − 1

)
/(|g|2 + 1) ∈ S2.

This vector is orthogonal to the integrand of the Weier-
strass formula and therefore a unit normal vector field of
the surface. The Weierstrass representation is therefore
built from a unit normal field and the differential of the
height function. The functions g, ~N are both called Gauss
map of the surface. – We mention that a surface is minimal
if its Gauss map ~N is anti-conformal. The ’anti’ comes in
because a minimal surface has Gauss curvature K ≤ 0. Of
the two choices for stereographic projection we used the
anticonformal one.

One of the simplest examples, the catenoid and its conju-
gate, the helicoid, are obtained from the following Weier-
strass data (see Helicoid-Catenoid ):

D := C \ {0}, g(z) = z, dh =
dz

z
.

The 3rd component of the Weierstrass integrand has the



imaginary period of dz/z which we discussed. The first and
second components have no periods because the singular
terms dz/z2 have the antiderivative −1/z (so that the pe-
riod integrals around the singularity vanish). If we set the
associate family parameter ϕ = 0 we get a surface without
period, a conformal immersion of C \ {0}, the catenoid. If
we set ϕ = π/2 we obtain a surface with vertical trans-
lation period, an immersion of the universal covering of
C \ {0}, the helicoid.
Remark. If one wants to visualize a surface one usually
needs to choose parameter lines. In case of the catenoid:
Only if one chooses polar coordinates around {0,∞}, does
the catenoid look familiar. For all other choices one can
hardly recognize it. With the good choice, the parameter
lines are the principal curvature lines. I believe these lines
give the eye the best clues to imagine the surface correctly
in space.

As in the case of the catenoid: Interesting Weierstrass data
have isolated singularities, usually zeros or poles. The fol-
lowing summary helps to find interesting examples:
Poles of dh are never on the surface and lines into the
puncture are infinitely long on the surface.
Zeros of dh have to be canceled by either a zero or else a
pole of g which have the same orders as the zeros of dh.
If a puncture is to be a half-catenoid, then the Gauss map
g must be single valued at the puncture. Furthermore, ei-
ther g · dh or else dh/g must have a double pole (as in the
case of the catenoid).



Let us try to find the Weierstrass data for the Trinoid of
Jorge-Meeks (see Symmetric and Skew k-Noids):

We have learnt from the catenoid that the huge opening
of a catenoid is conformaly only a puncture, just one point
missing. The picture therefore shows a sphere with three
punctures, say on the equator. With this orientation there
are just two points with vertical normals, one pointing
up, the other down. This implies that the Gauss map
is some power of z. Along the equator we find, for each
half-catenoid, one more normal which points in the same
direction as its limiting normal. The degree of g is there-
fore 2, hence g(z) = const · z2, and |const| = 1 to have
horizontal normals along the equator. Next dh. It needs
double zeros at 0,∞ to cancel the double zero and pole of
g and it needs double poles at the third roots of unity to
create the half-catenoids. Since dz/z is, up to sign, invari-
ant under inversion z 7→ 1/z, we write dh as a multiple of
dz/z (which has simple poles at 0,∞).



This gives the Weierstrass data of the trinoid:

g(z) := z2, dh =
z3

(z3 − 1)2
· dz
z

To get good parameter lines, i.e. polar coordinates near the
punctures, we use for one third of the unit disk the grid
shown to the left of the trinoid. Closed parameter lines
(’circles’) in the domain around a puncture are mapped
to closed curves in space since two orthogonal planes of
symmetry cut the space curves into four congruent arcs.

Next let us grow two half-catenoids out of the plane as
follows (see also The Lopez-Ros No-Go-Theorem):

Observe that the limiting normals of the two half-catenoids
point in the same direction, but not quite opposite to the
normal of the plane. On each half-catenoid one can locate
a finite point where the normal is opposite to the normal
of the plane. The Gauss map has two simple zeros at these
points, say at ±1, and a double pole at ∞. Therefore we
found g(z) = c · (z − 1)(z + 1). The zeros of g have to be



canceled by simple zeros of dh and dh needs double poles
at points ±r to create half-catenoids there.
This gives us a 2-parameter family of Weierstrass data:

g(z) := c · (z − 1)(z + 1), dh :=
z2 − 1

(z2 − r2)2
· dz.

In this case there is only one vertical symmetry plane cut-
ting the half-catenoids. Therefore closed curves around the
punctures are not by symmetry mapped to closed curves
in space, a period orthogonal to this plane can occur. The
parameter c can be used to make this period vanish, for
each r > 1. As r approaches 1 the two half-catenoids move
further and further apart. In other words: one cannot grow
two half-catenoids with limiting normals orthogonal to the
plane. The half-catenoids will therefore always intersect
the plane so that all these surfaces are only immersed,
none is embedded.

It is however possible to grow infinitely many equidistant
half catenoids out of the plane such that all these half-
catenoids have the same limiting normal and this nor-
mal is opposite to the normal of the plane. The straight
symmetry line between neighboring half-catenoids – which
was present in the previous example – continues to exist.
Therefore one needs to compute the surface only in a strip
between neighboring symmetry lines.
The Weierstrass data of this Catenoid Chain are easy to
guess:

g(z) := c · sin(z), dh :=
dz

sin(z)
,



where c ∈ R controls the size of the half-catenoids rela-
tive to their distance. It is more complicated to get polar
coordinates in a strip. Here is the result:

While sin has in the plane an essential singularity at ∞,
in the strip there is convergence. The strip with edges
identified is a cylinder with two half-catenoid punctures
– or a sphere with four punctures, the two half-catenoids
and the two ends of the flat strip. This last point of view
suggests rational Weierstrass data:

g(z) := c · (z − 1/z), dh :=
1

z − 1/z
· dz
z
, c ∈ R.



Beyond the singly periodic trigonometric functions one has
the doubly periodic meromorphic elliptic functions. Dou-
bly periodic means that we have two independent transla-
tional symmetries. The group of translational symmetries
is called a lattice Γ in C. Each lattice has a parallelogram
as fundamental domain and identification of opposite edges
makes the parallelogram into a torus. Meromorphic ellip-
tic functions can therefore be viewed as maps from tori to
the Riemann sphere. We visualize an elliptic function (de-
noted J F in 3D-XplorMath)by drawing the preimage on
the torus of the usual polar grid on the Riemann sphere:

The two coordinate centers in the middle are zeros of the
function, the two centers on the (identified) boundary are
poles. The rectangles around the polar centers (made of
symmetry lines of the picture) are preimages of the unit
circle.

If we use this elliptic function in the same way as we used



the sin-function before:

g(z) := c · J F (z), dh :=
dz

J F (z)
,

then we obtain the following doubly periodic minimal sur-
face:

The picture shows two copies of a fundamental domain for
the translational symmetries. The half-catenoids are at
the zeros of the function J F . At its poles are the zeros
of dh and these cancel the poles of the Gauss map g. In
other words: the poles of J F are points on the surface
with vertical normal. – The parameter lines on the surface
clearly are the image under the Weierstrass integral of the
grid on the torus shown before.



The Coordinate Viewpoint

The minimal surface just discussed could have been com-
puted in the described way, but it was not. So far we
looked at the torus as a quotient C/Γ and meromorphic
functions on a torus therefore were the same as meromor-
phic functions in C which had the translations τ ∈ Γ as
periods, meaning f(z + τ) = f(z). And the Weierstrass
integral was evaluated on a fundamental parallelogram for
the lattice Γ.
Elliptic functions J : C/Γ 7→ C are, away from their branch
points, locally invertible. They can therefore be viewed as
coordinate functions on the torus. The Weierstrass data
of our doubly periodic surface are given in terms of such
a function J . We also need to express dz in terms of J ,
namely: dz = dJ/J ′. This is almost all what we need, to
perform the Weierstrass integration not on the torus, but
in the range of the coordinate function J , i.e. in C. We still
need to express J ′ in terms of J . The Jacobi-type elliptic
functions which we constructed in ’Symmetries of Elliptic
Functions’ all had four branch values: ±B,±1/B. The two
functions (J ′)2 and (J2−B2) · (J2− 1/B2) have the same
four double zeros and the same two fourth order poles.
Since the domain torus is compact this implies that these
two functions are proportional. We ignore this multiplica-
tive constant because it only determines the scaling-size of
the fundamental domain. Thus we derived the . . .



Differential Equation for Jacobi-type Elliptic Functions:

J ′(z)2 = P (J) = J4 − (B2 +B−2) · J2 + 1,

J ′′(z) = P ′(J)/2 = 2J3 − (B2 +B−2) · J.

And the above Weierstrass data take this form:

g(J) = c · J, dh =
1

J
· dJ√

(P (J))
, J ∈ C.

This looks much simpler than before and can be directly
integrated on a standard polar coordinate grid in C. The
remaining problem is the square root. It is a multivalued
function and we have to choose the correct branch. Since
we are doing path integrals along curves which avoid the
branch values (i.e. the zeros of the polynomial P ), such an
analytic continuation of the square root can be built into
the integration routine.

Remark 1. This coordinate view point is a first important
step towards the theory of Riemann surfaces. While for
tori this view point is only a simplification, it becomes es-
sential for minimal surfaces parametrized by higher genus
surfaces.
Remark 2. The above differential equation is an example
where the dominating Runge-Kutta method fails: If one
starts the integration at a zero of P then Runge-Kutta
produces a constant solution. There are 4th order meth-
ods which use J ′′ and work fine.
The same is already true for the ODE (sin′)2 = 1− sin2.



Half-Catenoids with opposite normals

How can one find a Weierstrass representation for this sur-
face? (See also Symmetric and Skew k-Noids.)

The surface looks like two catenoids joined by a handle, in
other words: a sphere with four half-catenoid punctures.
We place the surface so that the four limiting normals of
the half-catenoids lie in the horizontal plane and form small
angles ±ϕ with the y-axis. On the handle, and also on the
waist of each catenoid, one sees one point with the normal
pointing vertically up, one point with the normal down.
The gauss map therefore has three zeros and three poles
on the real axis: g(z) = z(z2 − r2)/(1 − r2z2). They are
positioned symmetric to the y-axis and to the unit circle.
The differential dh must have 6 zeros at these points to
make them into finite points on the surface, and it must



have four double poles on the unit circle to create the hor-
izontal half-catenoids. This gives a 2-parameter family of
Weierstrass data:

g(z) := z
z2 − r2

1− r2z2
,

dh := (1− z2 + z−2

r2 + r−2
)(

z2 + z−2

e2ϕ + e−2ϕ
− 1)−2 dz

z
.

For most choices of parameters the half-catenoid punctures
have vertical periods. A residue computation shows that
these periods vanish if

e2ϕ + e−2ϕ = 2 cos 2ϕ = 4r2/(1 + r4).

Historically this is the first surface that showed David Hoff-
man and me a handle which connected two minimal sur-
faces, deforming them slightly.

If we imagine such handles to grow in two opposite di-
rections out of the waist of the catenoid, then symmetry
would allow the catenoid to stay straight. Therefore we can
think of making a fence of parallel catenoids, see Fence of
Catenoids. Parallel translation from the symmetry plane
of one handle to the symmetry plane of the next handle
would be a congruence map of this surface. The quotient
by this translation group is a torus with two half-catenoid
punctures whose limiting normals point in opposite direc-
tions. The handle has two points with normals parallel
to the limiting normals of the half-catenoids. The surface
in the following picture therefore has a Gauss map with



two zeros and two poles. One zero and one pole are half-
catenoid punctures, the other two are finite points on the
handle.

So first, what kind of a torus is this? There are two types
of tori which have involutive symmetries, the rectangular
tori and the rhombic tori. They are easy to distinguish:
the fixed point set of such an involution of a rectangu-
lar torus has two components, while such involutions of
rhombic tori have fixed point sets with only one compo-
nent. (Note that the interruption of a fixed point set by a
puncture is ignored in this count because the puncture is a
point on the torus, it is only missing on the image minimal
surface.) There are symmetry lines going from the handle
into each puncture: They lie in the same plane and are two
components of the fixed point set of the surface reflection



in this plane. The parametrizing torus is therefore rect-
angular. Each of the two symmetry arcs joins points with
vertical normals in opposite directions. The following pic-
ture allows to visualize this elliptic function, it is again the
preimage of a standard polar grid on the Riemann sphere.

The left bottom and right top polar centers are zeros of
the function, the other two polar centers are first order
poles. Because of this diagonal arrangement this function
is called J D in ’Symmetries of Elliptic Functions’. The
rectangles which are filled with a polar grid are preimages
of the unit circle. The branch points are the points where
more than 2 parameter lines cross. For rectangular tori,
the branch values are all on the unit circle.
We will make the two top polar centers the punctures, the
two bottom polar centers the finite points with vertical
normals (on the handle). Then the function J F , repre-



sented by the earlier grid, gives us the second part of the
Weierstrass data:

g(z) := J D(z), dh := J F (z)dz.

As before we can integrate in the range of an elliptic func-
tion of our choice. The functions J D, J F can be com-
puted from each other by solving quadratic equations (D
is the branch value of J D in the first quadrant):

J D +
1

J D
=
D + 1/D

2
(J F +

1

J F
),

(J F )′ = J F · (J D)′(0) ·
(

1

J D
− J D

)
,

dz = d(J F )/(J F )′.

(Recall: (J D)′(0) controls the size of the fundamental do-
main.) Again square roots appear and the correct branch
has to be chosen. (For the last surface a more complicated
grid than the standard polar grid on the sphere was used.)

So far we have explained how the Weierstrass representa-
tion works for minimal surfaces which are punctured tori.
But we have not touched an important question. The
Weierstrass representation is well suited to create immer-
sions, and rather many easily. But it requires separate
considerations to decide whether the immersed surface is
without selfintersections, whether it is embedded. For 300
years the plane and the catenoid were the only complete
embedded minimal surfaces (CEMS) which have finite to-



tal curvature. Finite total curvature means that the nor-
mal Gauss map from the surface to the unit sphere has
finite degree, i.e. there is a number d such that almost
all points of the sphere are hit d times by the gauss map.
Or put differently: that the Gauss map is a meromorphic
function.
Lopez-Ros have proved: The only CEMS of finite total
curvature which are conformally punctured spheres, are the
plane and the catenoid. The Lopez-Ros No-Go-Theorem.
R. Schoen has proved: The only CEMS which have no more
infinities than two catenoid punctures are the catenoids
themselves. R. Schoen’s No-Go-Theorem.
There is an obvious attempt to make a torus with two
catenoid ends: Instead of growing handles to the outside -
which created the fence of catenoids above - one can grow
the handles to the inside. It is easy to start with small
handles which are too short to meet in the middle:

The handles end in planar sym-
metry lines which - after trans-
lation! - fit together perfectly.
The only problem is that a
curve, which is closed on the
torus, has a Weierstrass im-
age in R3 that is not closed, it
has a nonzero period. Schoen’s
theorem forbids that one can
make the handles long enough.
So, how does the example fail?



Things go well for a while: the handle grows and the gap
narrows. But, as one changes the parameter further in the
promising direction, the mouth of the handle becomes very
elongated and the surface starts to look like two catenoids
whose far out portions are connected. Except that the gap
remains no matter how far apart the middle portions of
the two catenoids are pushed. The following picture shows
how close to a counterexample of Schoen’s theorem one
gets, or, what difficulties Schoen’s proof has to overcome.

Failing attempt to grow a handle through a catenoid.

It was a big surprise when Costa found a minimally im-
mersed punctured torus which Hoffman and Meeks proved
to be embedded! The surface is a bit similar to our early
example where two half-catenoids grow out of a plane.
Therefore we first try to imagine a torus with a planar
end. This is a difficult request until one turns it around
and asks for a plane with a handle:



A plane with a handle is a torus with a planar end.

This surface is a stereographic projection of one of the
Clifford Tori , the projection center is on the surface. All

its parameter lines are circles, except for the two straight
lines which pass through the midpoint of this surface. It is
a torus with one puncture. The torus is the square torus
because it is a) rectangular since the fixed point sets (on
the surface) of the reflections in two vertical planes have
two components and it is b) rhombic because 180◦ rotation
about the straight lines are symmetries whose fixed point
sets have only one component.
The strategy is: puncture the torus in the two points where
the normal to the two straight lines (= the intersection of
the symmetry planes) intersect the surface again and grow
half-catenoids at these points towards the outside (or away



from the straight lines).

This plan contains enough information to write down the
Weierstrass data of

Costa’s Minimal Surface:



We draw the quadratic fundamental domain of our square
torus such that the straight lines on the cyclide surface
become the diagonals. Note that they are also one compo-
nent fixed point sets of orientation reversing involutions.
The pair of horizontal symmetry lines (the parallel bound-
ary segments are identified) are a two component fixed
point set of an involution, and the pair of vertical symme-
try lines also. The points C1, C2 are the punctures for the
half-catenoids. The point P is the (conformal) point at in-
finity of our plane with handle. The center is called S (for
saddle). The normals at S,C1, C2 point in one direction,
the normal at P in the opposite direction. We take these
directions as vertical so that the Gauss map has simple
zeros at S,C1, C2 and therefore a triple pole at P .

This forces the height differ-
ential dh to have simple poles
at C1, C2 to make these points
catenoid punctures. At S we
need to compensate the sim-
ple pole of 1/g with a simple
zero. The remaining other sim-
ple zero would cause a branch
point everywhere except if it

is at P . These zeros and poles determine g up to a fac-
tor a exp(i · α) and dh up to a factor b exp(i · β). Clearly
b only scales the surface and α rotates it. And β is the
associate family parameter, it is chosen to make the pe-



riods of the catenoid punctures imaginary. Under these
conditions the fixed point sets of the involutions turn out
to be straight lines (the diagonals) and planar geodesics.
This was not at all clear initially, but it follows immedi-
ately from the description of the functions in ’Symmetries
of Elliptic Functions’. With the parameter a we have at
this point the Weierstrass data of a 1-parameter family of
candidates. With an intermediate value argument one can
choose a so that the dotted curve - which is closed on the
torus - also has a closed Weierstrass image in R3.

Weierstrass Data for the Costa Surface:

g(z) = a · (J E · J F )′(z), dh =
dz

J D(z)
.

Up to a multipicative constant the function J E · J F is
the Weierstrass ℘-function (here for the square torus).
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Chain of Half-Catenoids
and Field of Half-Catenoids *

These surfaces played no role in the history of minimal
surfaces, but they explain very nicely how the Weierstrass
representation works, compare Half-Catenoids and Weier-
strass Representation.

Weierstrass representation of a vertical catenoid:

g(z) = z, dh =
dz

z
.

Weierstrass representation of a singly periodic chain of ver-
tical half-catenoids:

g(z) = bb · sin(z), dh =
dz

sin(z)
.

The simple zeros of the sine function create half-catenoid
punctures. These punctures have no real periods since
two orthogonal planes of mirror symmetry cut each half-
catenoid into four congruent pieces. Neighboring half-
catenoids are separated by straight lines. They are axes of
180◦ rotation symmetry. One needs to compute the surface
only in a strip between two neighboring lines. The scaling

* This file is from the 3D-XplorMath project. Please see:
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factor bb in the Gauss map controls the size of the half-
catenoids relative to the distance between them. Two such
strips are a fundamental domain for the group of transla-
tion symmetries.

Weierstrass representation of a doubly periodic field of ver-
tical half-catenoids:

g(z) = bb · JF (z), dh =
dz

JF (z)
.

The function JF is a doubly periodic function on C, in this
case with a rectangular fundamental domain. In each fun-
damental domain JF has two simple zeros and two simple
poles, see ‘Symmetries of Elliptic Functions’. The zeros of
the Gauss map g together with the poles of dh create the
half-catenoid punctures. The poles of g are cancelled by
the zeros of dh, they give the polar centers on the surface.
As in the previous examples we have orthogonal planes of
mirror symmetry cutting each half-catenoid and we have
straight lines on the surface, running between the half-
catenoids. These symmetries of the minimal surface are a
consequence of the corresponding symmetries of the ellip-
tic function which determines the Weierstrass data. The
scaling parameter bb of the Gauss map changes the size of
the half-catenoids relative to their distance.
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The Doubly Periodic JD Minimal Surfaces *

These families are parametrized by 4-punctured rect-
angular tori; they and their conjugates are embedded. We
therefore suggest the associate family morphing, and also
morphing of the modulus, bb, (0 < bb < 0.5) of the rect-
angular torus, which changes the size of the visible holes.

For the visual appearance of these surfaces it is par-
ticularly important that the punctures are centers of polar
coordinate lines. Formulas are taken from [K1] or [K2].
The Gauss maps for these surfaces are degree 2 elliptic
functions. The cases shown are particularly symmetric,
the zeros and poles of the Gauss map are half-period points
and the punctures are there. In the Jd-case the diagonal of
the rectangular fundamental domain joins the two zeros,
and in the Je-case it joins a zero and a pole of the Gauss
map.

Under suitable choices of the modulus of the torus
these surfaces look like a fence of Scherk saddle towers -
with a vertical straight line (Je), respectively a planar sym-
metry line (Jd), separating these towers. The conjugate
surfaces look qualitatively the same in the Jd-cases and
like a checkerboard array of horizontal handles between
vertical planes in the Je-cases.

H.K.
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The Doubly Periodic JE Minimal Surfaces *

These families are parametrized by 4-punctured rect-
angular tori; they and their conjugates are embedded. We
therefore suggest the associate family morphing, and also
morphing of the modulus (aa) of the rectangular torus,
which changes the size of the visible holes. (The images of
this deformation looked best when the u-range was modu-
lus dependent:
umax := (5-2*aa)+bb; umin := -umax;
The parameter bb lets the user overrule the above depen-
dence.

For the visual appearance of these surfaces it is par-
ticularly important that the punctures are centers of polar
coordinate lines. Formulas are taken from [K1] or [K2].
The Gauss maps for these surfaces are degree 2 elliptic
functions. The cases shown are particularly symmetric,
the zeros and poles of the Gauss map are half-period points
and the punctures are there. In the Jd-case the diagonal of
the rectangular fundamental domain joins the two zeros,
and in the Je-case it joins a zero and a pole of the Gauss
map.

Under suitable choices of the modulus of the torus
these surfaces look like a fence of Scherk saddle towers -
with a vertical straight line (Je), respectively a planar sym-
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metry line (Jd), separating these towers. The conjugate
surfaces look qualitatively the same in the Jd-cases and
like a checkerboard array of horizontal handles between
vertical planes in the Je-cases.

H.K. TOC



Riemann’s Minimal Surfaces *

This is the family of singly-periodic embedded minimal
surfaces found by Riemann. They are parametrized (aa)
by rectangular tori. The Gauss map is the Weierstrass ℘
function additively normalized to have a double zero at the
branch point diagonally opposite the double pole and mul-
tiplicatively normalized to have the values plus or minus i
at the four midpoints (on the torus) between the zero and
the pole. The minimal surface has rotational symmetries
around the corresponding normals. This symmetry kills
the horizontal periods. The surface is parametrized by the
range of the Gauss map with polar coordinates around the
punctures. The surfaces look like families of parallel planes
with one handle between adjacent planes. The associate
family morphing joins two such embedded surfaces—they
are congruent for the square torus. The standard morph-
ing (aa) changes the branch values of the Gauss map, i.e.
the tilt of the normal at the flat points (K = 0).

H.K.
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The Chen-Gackstatter Minimal Surface *

and Higher Dihedral Symmetry Examples

This surface is the first finite total curvature immersion of
a Riemann surface of genus > 0 (here the square torus). It
looks like an Enneper surface with a handle added parallel
to its center saddle. This description determines the Gauss
map only up to a multiplicative constant (cc), which we
took as the morphing parameter. If this parameter is gen-
eral then we get a doubly periodic minimal immersion of
the plane. The morphing indicates how the period can be
closed for one value of cc with the intermediate value theo-
rem. The resemblance with the standard Enneper surface
is emphasized by using polar coordinates around the punc-
ture. The dd=3 surface is an analogue which can be viewed
as a higher order (120 degree symmetric) Enneper surface
with a Y-shaped handle glued in. It was first published in
a 1988 Vieweg Calendar by Polthier and Wohlgemuth.

H.K.
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Costa’s Minimal Surface *

This surface was responsible for the re-kindling of interest
in minimal surfaces in 1982. It is a minimal embedding
of the 3-punctured square torus. Its planar symmetry lines
cut this surface into four conformal squares and the two
straight lines through the saddle are the diagonals of these
squares.

The Gauss map of such a surface is determined by its quali-
tative properties only up to a multiplicative factor cc which
we suggest for the morphing (as in the Chen-Gackstatter
case). It closes the period (at cc0) with an intermediate
value argument.

After Costa’s existence discovery, Hoffman-Meeks proved
embeddedness; they also found a deformation family through
rectangular tori, where the middle end deforms from a pla-
nar one to a catenoid end. They generalized this family to
any genus by increasing the dihedral symmetry.

H.K.
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About the Costa-Hoffman-Meeks *

Minimal Surfaces

The original Costa surface was responsible for the rekin-
dling of interest in minimal surfaces in 1982. It is a mini-
mal embedding of the 3-punctured square torus. Its pla-
nar symmetry lines cut this surface into four conformal
squares and the two straight lines through the saddle are
the diagonals of these squares. Because of the emphasis
on the symmetries, our formulas are taken from [K2.] The
Costa-Hoffman-Meeks surfaces are generalizations of the
Costa surface; their genus grows as the dihedral symmetry
(controlled by dd) is increased. The underlying Riemann
surfaces are tesselated by hyperbolic squares with angles
π
k , (k = 2, 3, ...).

The Gauss map of such a surface is determined by its quali-
tative properties only up to a multiplicative factor cc which
we suggest for the morphing (as in the Chen-Gackstatter
case). It closes the period (at cc0) by an intermediate value
argument.

As in Costa’s case, the qualitative picture determines the
Gauss map only up to a multiplicative factor. The stan-
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dard morph shows the dependence of the surfaces on this
factor, closing the period at cc0.

H.K. TOC



The Fence of Catenoids *

These singly periodic surfaces are parametrized (aa) by
rectangular tori; our lines extend polar coordinates around
the two punctures to the whole torus. The surfaces look
like a fence of catenoids, joined by handles; they were
made by Karcher and Hoffman, responding to the sug-
gestive skew 4-noids. The morphing parameter aa is the
modulus (a function of the length ratio) of the rectangular
torus. The surface is reflection symmetric with respect to
planes parallel to the coordinate planes; in each case has
the fixed point set, modulo translations, two components.
This proves that the parametrizing torus is rectangular.
(The fixed point set in the rhombic case has one compo-
nent and the square torus has both symmetries.)

H.K.
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Scherk’s Surface with a Handle Added *

This surface is a genus one version of Scherk’s doubly-
periodic surface. Existence and embeddedness is proved in
[KWH], and our formulas are from there.

The conjugate fundamental domain is bounded by
straight lines. This piece can be rotated to be a graph
over a convex domain, and in this position the original
piece is also a graph. For this we suggest the associate
family morphing.

The surface has a period problem, because the posi-
tion of the punctures is not determined on the square torus
by qualitative considerations. We suggest the (joint) po-
sition of the punctures as morphing parameter (ee), again
to illustrate the use of intermediate value arguments for
killing periods.

H.K.
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R. Schoen’s Catenoid Characterization *

R. Schoen’s theorem says:

The only finite total curvature complete, embed-
ded minimal surface having two ends, is the Catenoid.

Our example shows what happens if one tries—in spite of
this theorem of Schoen—to add a handle to a Catenoid.

The fundamental piece is similar to that of the catenoid
fence, except that the handle does not go outward to the
neighbouring catenoid but goes inward to meet its other
half. However a gap remains, and as one tries to close it
(by morphing with the modulus, aa, of the underlying rect-
angular torus) the surface degenerates to look almost like
two catenoids that move farther apart as one tries to close
the gap. We show this with the default morphing. The
deformation goes between rather extreme surfaces where
one has to adjust how far one computes into the end and
then also the size. While this animation is a bit jumpy, it
is instructive and therefore recommended.

H.K.
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The Conjugate Plateau Construction
Of Triply Periodic Minimal Surfaces *

The Weierstrass representation for triply periodic minimal
surfaces is more difficult than what we have explained so
far. A simpler approach is the conjugate Plateau construc-
tion which, as we will see, can loosely be called the soap
film point of view. Without further explanation we use the
fact from complex analysis that the derivative of the imag-
inary part of a function z 7→ f(z) can easily be computed
from the derivative of the real part of f . This fact is known
as the ‘Cauchy-Riemann equations’. It implies that, on a
simply connected domain, the real part of f determines the
imaginary part up to a constant. Of course this holds for
the three components of the Weierstrass integral so that
a simply connected minimal surface piece determines its
conjugate surface up to an R3-constant.

The next step is the soap film part: The Plateau problem
arose from the soap film experiments of the 19th century
physicist Joseph A.F.Plateau. Its solution (1932) by Dou-
glas and Rado states:
Every closed continuous injective curve in R3 is the bound-
ary of at least one simply connected minimal surface.
This theorem expresses a fundamental property of the min-
imal surface equation: It is well suited for boundary value
problems. On the other hand, initial value problems usu-
ally have no solution. In particular, the minimal surface
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piece of a Plateau solution usually cannot be extended be-
yond its boundary curve. So, how can it help to get com-
plete solutions without boundary?

Here symmetries come to the rescue. If the boundary curve
contains a straight line segment then 180◦ rotation of a
Plateau solution around this segment extends the minimal
surface to twice as large a piece. If the boundary curve
is a polygon then extension by 180◦ rotation works for all
segments of the original polygon and all segments of the
rotated polygons. The resulting surfaces usually have sin-
gularities at the vertices of these polygons. However, if all
the angles of the polygon are of the form π/k, k ∈ N, then
repeated rotation about the edges that start at one vertex
p results in a surface for which p is an interior, regular
point. Such contours therefore lead to complete minimal
surfaces without boundary, but usually with lots of self-
intersections. Only a few such minimal surfaces, which are
embedded, are known. An example is the conjugate of the
Schwarz’ P-surface:

All angles of this hexagon are 90◦, the z-axis divides it into
two 90◦-pentagons.



The next step gives us a wealth of embedded examples.
We consider the conjugates of the just described Plateau
solutions with polygonal boundaries. A surprise happens
to the straight line segments of the boundary which are
symmetry lines on the extended surface with the symme-
try being 180◦-rotation:
The boundary of the conjugate piece consists also of sym-
metry arcs. These arcs are planar geodesics and the ex-
tended surface is reflection symmetric with respect to these
planes.
The strategy of the conjugate Plateau construction is, to
choose the polygonal contour for the Plateau solution in
such a way that the extension of its conjugate piece by
reflection in the planes of the boundary arcs give an em-
bedded minimal surface.
This is helped by two geometric facts:
(i) The Plateau solution very often is a graph over a convex
domain which is bounded by a suitable orthogonal projec-
tion of the boundary polygon. Therefore it is embedded.
Romain Krust proved that in this situation the conjugate
piece is also a graph, hence embedded.
(ii) The boundary polygon determines the angle by which
the normal of the Plateau solution rotates along each bound-
ary segment. The Weierstrass representation shows that
the normal of the conjugate piece rotates along each bound-
ary arc by the same angle.

The Fujimori-Weber surfaces are very good examples for
the described construction. In the Action Menu one can



select Don’t Show Reflections to see the fundamental
piece. Also in the Action Menu one can switch between a
minimal surface and its conjugate. In the View Menu one
can switch between WireFrame Display, Patch Display,

Point Cloud Display. In WireFrame and in Point Cloud
Display the Action Menu offers Emphasize Boundary, so
that one can easily see the polygonal contour for the Plateau
solution and its conjugate – which is the fundamental piece
of a Fujimori-Weber surface, bounded by planar symmetry
arcs. The following pictures are an ff = 4 example:



The Plateau contour is a hexagon with four 90◦ and two
60◦ angles. The z-axis divides it into two pentagons. Ob-
serve that the conjugate piece has its normals parallel to
the normals of the Plateau piece – at corresponding points
of course. The third picture is an assembly of twelve such
fundamental domains.

All of our Fujimori-Weber surfaces can be described in the
above way. Note that not only the angles of the hexagon
between adjacent edges are important, but also the fol-
lowing: Let a, b, c be three consecutive edges. The angle
between a plane normal to a and a plane normal to c has to
be either 0 or of the form π/k, k = 2, 3, 4, 6. Otherwise the
group generated by the reflections in the symmetry planes
of the conjugate of the Plateau solution is not discrete and
the extended surface cannot be embedded.

Several of the Fujimori-Weber surfaces agree with other ex-
amples in 3D-XplorMath: ff = 2 is the Schwarz P -surface,
ff = 5 is the Schwarz H-surface, ff = 8 is the A. Schoen
S-S-surface and ff = 7 is the same surface ’inside-out’,
that is, the assembled piece has the other side of the sur-
face as its outside. If a minimal surface carries a straight
line, then the 180◦ symmetry rotation interchanges the
two sides of the surface – therefore there is no geomet-
ric distinction between the two sides. Here this happens
if the pentagon-half of the Plateau hexagon has a reflec-
tion symmetry, as in the cases ff = 2, 5 above. The other
cases come in such ’inside-out’ pairs, which look like differ-
ent surfaces but are not, because the pentagon-halfs of the



Plateau hexagon are the same polygon. The other pairs are

ff = 1, 3 (A. Schoen’s H-T–surface),
ff = 4, 6 (A. Schoen’s H-R–surface) and
ff = 9, 10 (A. Schoen’s T -R–surface).

Although the triply periodic surfaces in 3D-XplorMath can
most easily be understood by this conjugate Plateau con-
struction, they are not computed in this way. It is another
story to explain the functions and their domains which are
used in the Weierstrass representation to compute these
surfaces.
In [Ka] a Weierstrass representation for several Plateau
problems as above is derived. Also fifteen 1-parameter
polygonal contours are discussed which give further exam-
ples because the obstructing period problem can be solved
by the intermediate value theorem.
In [FW] the Fujimori-Weber surfaces are obtained with a
non-standard use of the Weierstrass representation. The
collection of examples described in this paper is much larger
than what is shown in 3D-XplorMath.
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About the Schwarz PD Family *

This is a 2-parameter family of triply periodic genus 3
minimal surfaces. For all parameter choices are the orig-
inal surface and the conjugate surface embedded. The
most symmetric example (with a cubic lattice) which is
obtained when cc = 0, dd = 0, was already constructed
by H. A. Schwarz. When Alan Schoen found more triply
periodic surfaces around 1970 he named the two surfaces
which Schwarz found the P-surface (P for cubic primitive)
and the D-surface (D for diamond). He also found a third
embedded(!) surface in the associate family of these, the
Gyroid (associate parameter 0.577 which is approx. 52 de-
grees). If dd=0 then a fundamental cell for the lattice is
a prism with square base. In the morphing cc changes the
height of the prism.

K. Grosse-Brauckmann, M. Wohlgemuth: The Gyroid is
embedded and has constant mean curvature companions.
To appear Calc. Var. 1996

H.K.
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About the Schwarz H family *

This is a 1-parameter family of triply periodic surfaces.
The surfaces are made of pieces which one could call “tri-
angular catenoids”; annular Plateau solutions bounded by
two parallel equilateral triangles. In the morphing aa changes
the height-to-edge length ratio of these triangular catenoids.
Observe that, as in the case of circles bounding catenoids,
the distance between the triangles has to be small enough
and then they bound a stable and an unstable triangu-
lar catenoid. In the PD-family with dd=0 one can observe
analogous “square catenoids”, except that our parametriza-
tion does not emphasize them.

When Alan Schoen found more triply periodic sur-
faces around 1970 he named these “Schwarz’ H surfaces”.
(Maybe Schwarz constructed only one member of the fam-
ily.) Later, the Swedish chemist, Lidin, found another em-
bedded example (now called the Lidinoid) in the same as-
sociate family, when aa is approximately 0.55, and the as-
sociate family parameter is 0.7139, (about 64.25 degrees).

H.K. TOC
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Four Triply Periodic Minimal Surfaces *

The four surfaces are:
· Neovius’ surface inside a cube (no deformations)
· A. Schoen’s S-S-surface in a quadratic prism (deforms)
· A. Schoen’s H-T-surface in a hexagonal prism (deforms)
· A. Schoen’s T-W-surface in a hexagonal prism (deforms)
The images in 3D-XplorMath show a fundamental domain
for the group of translational symmetries. The curves
on the boundary are planar symmetry arcs, reflection in
their planes extends the fundamental domain to neighbor-
ing pieces. These planes, or rather their halfspaces that
contain the fundamental domain, intersect in a crystallo-
graphic cell.
Neovius was a student of H. A. Schwarz. A. Schoen worked
for NASA and he even made models of the surfaces he dis-
covered. The T-W-surface is not in his list, but made in
his spirit. Initially his descriptions were not accepted by
mathematicians. In [Ka] it was shown that their existence
follows easily with The Conjugate Plateau Construction
and Schoen was finally given credit for his discoveries.
What else should one observe in these pictures?
The images were not computed via the conjugate Plateau
construction, but by using the Weierstrass representation.
This representation requires the understanding of func-
tions which are related to these minimal surfaces. To con-
struct such functions is a mathematical challenge and to
visualize them is not easy either. In 3D-XplorMath com-
plex functions are (mostly) visualized by showing a grid in
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the domain and the image grid. We need functions that
are well defined on the whole minimal surface. Thus visu-
alization seems to require that we put a grid on the whole
surface - which is impossible.
One such function is always the Gauss map which one can
sort of ‘see’ by translating the normals of the surface to the
origin, thus mapping the surface to the Riemann sphere.
The four surface pictures are covered by patches which
look like polar coordinates. This offers a different kind of
visualization: The function on the surface which is respon-
sible for these polar grids, maps the surface in such a way
to the Riemann sphere that our grid becomes the standard
polar grid on the sphere. One may compare this with the
interpretation of a hiking map with level lines.

This S-S-surface shows these level
lines for the Gauss map: The two
big polar centers are a zero and a
pole (of order 3); the preimage of
a hemisphere (around 0 or ∞) in
most directions ends at a horizontal
symmetry line – i.e. at the preim-
age of the equator; but these hori-

zontal arcs are connected by vertical (boundary) symmetry
arcs, how is that possible? These vertical symmetry arcs
have inflection points in their middle, i.e. double points of
the Gauss map; the vertical symmetry arcs are therefore
preimages of slits in the upper (resp. lower) hemisphere.



In the other three cases the level lines belong to functions
which are obtained as quotient by a smmetry group. Al-
though such a construction of a function is rather abstract,
the grid lines at least show how the surface is mapped to
the sphere.

Consider the T-W-surface first. Clearly
there is a 120◦ rotation symmetry and
orthogonal to its axis are three 180◦ ro-
tation axes. Identification with this or-
der 6 symmetry group makes out of the
twelve polar grid patches just two, one
around the northpole the other around
the southpole of the quotient sphere.

In other words: the parameter lines on this surface are the
level lines of the quotient function to the sphere.

The Neovius surface has its eight
polar centers on the space diago-
nals of its cubical crystallographic
cell. The group of 180◦ rotations
around the coordinate axes has or-
der four. Identification by this sym-
metry group (modulo translations)
makes again a sphere out of the
Neovius surface and the 8 polar

patches are the preimages under the quotient map of stan-
dard polar coordinates on the quotient sphere. The preim-
age of the equator consists, for each polar patch, of the
twelve symmetry arcs which form the boundary of these



polar patches. Our parameter lines, therefore, give an ex-
cellent impression of this quotient function.

Finally the H-T-surface. The fun-
damental piece itsself has a 60◦ sym-
metry rotation group. But one can
see that the neighboring polar cen-
ters along the top boundary should
be preimages of a northern and a
southern hemisphere, while the po-
lar centers which lie vertically above

each other should be identified because there is a branch
point of the identification map between them. We there-
fore take the symmetry group as for the T-W-surface: the
120◦ rotations around the vertical axis plus the three 180◦

rotations around the horizontal axes through the branch
points between the polar centers. Then again our param-
eter lines are the preimages of standard polar coordinates
on the quotient sphere.
It still takes more effort to understand the Weierstrass rep-
resentation. But if these images help to see functions from
these minimal surfaces to the Riemann sphere then they
have prepared the ground for the final step.
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The Fujimori-Weber Surfaces*

S. Fujimori and M. Weber derived in [FW] a Weierstrass
representation for a large collection of embedded triply pe-
riodic minimal surfaces. In 3D-XplorMath ten of their
families are realized, choose ff = 1, . . . , 10. For each ff we
get a 1-parameter family, where the parameter cc controls
the length ratio between the horizontal and vertical closed
symmetry lines, see the default morph.
In the third part of About Minimal Surfaces (available
from the Documentation Menu) we explain a construction
of these surfaces with the help of minimal surface pieces
which are bounded by hexagons in R3. To see these fun-
damental pieces, select in the Action Menu Don’t Show

Reflections and look also at the conjugate piece (which
is the one bounded by a hexagon). In Wire Frame and in
Point Cloud Display one can emphasize the boundary in
the Action Menu.
Some of these surfaces can also be seen with a different
parametrization in 3D-XplorMath. The parameter lines
on the Fujimori-Weber surfaces are level lines and lines of
steepest descent for the height function in z-direction. For
the other triply periodic surfaces the level lines are pull
backs of polar coordinates under a complex differentiable
function defined on the minimal surface.
The Weber-Fujimori surfaces give for
ff = 2 the Schwarz P-surface,

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/ TOC

http://3D-XplorMath.org/


ff = 5 the Schwarz H-surface,
ff = 8 the A Schoen S-S-surface,
ff = 7 the same surface ’inside-out’.
For minimal surfaces which carry straight lines there is
no geometric distinction between the two sides, because
180◦ rotation around such a line maps the minimal sur-
face onto itsself, but interchanging the two sides. If there
are no lines on the surface then the two sides may look so
different that they appear to be different surfaces. But in
reality the fundamental pieces are only assembled in differ-
ent ways – showing mainly one side of the surface in one
case and the other side in the other case (choose in the
View Menu: Distinguish Sides By Color). The other
such pairs are
ff = 1, 3 (A. Schoen’s H-T-surface, also in 3DXM),
ff = 4, 6 (A. Schoen’s H-R-surface),
ff = 9, 10 (A. Schoen’s T-R-surface).

[FW] Fujimori S., Weber M.: Triply Periodic Minimal Sur-
faces Bounded By Vertical Symmetry Planes. Manuscripta
Math. 129, 29 - 53 (2009).
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User Defined Weierstrass Data *

The close connection between minimal surfaces and com-
plex variables was worked out in the second half of the
19th century and resulted in a flourishing of the theory of
minimal surfaces. One consequence of this new insight is
the so-called Weierstrass representation formula for min-
imal surfaces. Originally this representation was a local
one that only in exceptional cases allowed the represen-
tation of a complete surface. It was not until the work
of Osserman (1962) that it became clear that the Weier-
strass representation was in fact global. Unfortunately it
is considerably more difficult to explain the global inter-
pretation of the Weierstrass representation than it is to
write down the local formula. Moreover, the input data
for global numerical computations are much more compli-
cated than what is needed in order to draw just a local
piece of a surface. For these reasons, the dialog box in
3DXplorMath for user defined Weierstrass representaions
only allows for the making of a local patch, and it is only
the local formulation that we discuss below.

The input data for the local Weierstrass representation are
two complex differentiable functions f, g defined on a re-
gion U of the complex plane. A basic fact for the repre-
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sentation formula to work is that the integral of a com-
plex differentiable function along a curve gives a constant
result if the curve is deformed keeping both end points
fixed. We can therefore define a differentiable map F from
the simply-connected region U into R3, by specifying a
three-dimensional integrand in terms of f and g, and then
integrating from a fixed base point ∗ ∈ U and taking the
real parts:

z 7→F (z) :=

Re
(∫ z

∗

(
(1− g(z)2), i(1 + g(z)2), 2g(z)

)
f(z)dz

)
The surface piece defined by this map is always a mini-
mal surface piece, and this formula therefore allows a user
of 3DXM to view as many minimal surface pieces as de-
sired. A short computation shows that the function g has a
very nice geometric interpretation. It is customary to asso-
ciate a unit vector u in R3 to each complex numbers w, by
considering the complex plane as the x-y-plane in R3 and
taking u to be the inverse image of w under stereographic
projection. (To see examples choose in the Conformal Cat-
egory for any selected function in the Action Menu Show
Image On Riemann Sphere.) If one associates in this way a
unit vector u to w = g(z), then one obtains for u a unit vec-
tor orthogonal to the surface at F (z). In other words: the
function g composed with stereographic projection gives
the normal Gauss map of the surface. The normal Gauss
map is basic in the study of surfaces, and for example the



various curvatures considered by differential geometers all
have simple expressions in terms of the normal Gauss map.
A geometric interpretation of the function f is much less
immediate and this is perhaps one reason why it took so
long for the above formula to be understood globally.

Sufficiently small pieces of any minimal surface are real-
istic models of soap films—provided the derivative of the
parametrizing map F never vanishes. A point on a minimal
surface where the derivative of F vanishes is called a branch
point. Since soap films do not have branch points, one
wants to look at minimal surfaces without branch points,
and this can be decided from the Weierstrass data as fol-
lows:

If the function f has a zero at some point z0 then the
derivative of F at z0 vanishes unless the other part of the
integrand becomes infinite. At such points, where g(z0) is
infinite, f needs to have a zero of twice the order as the
infinity (pole) of g at z0. If the order of the zero of f is
larger than this then one still has a branch point and if the
order of the zero is smaller, then F (z0) itself is infinite, so
we do not get a point on the surface. The default examples
allow one to contemplate these facts.

Note that we use polar conformal coordinates, that is,
z = exp(u+ iv), with umin ≤ u ≤ umax, 0 ≤ v ≤ 2π.
The unit circle is the image of u = 0.

The Catenoid data have a pole at z = 0, and indeed there
is no corresponding point on the catenoid. The situation



is similar at z = ∞ so that the catenoid is parametrized
by a sphere minus two points. – If f is changed to i · f
then one obtains the so called conjugate surface. In this
case one obtains the helicoid, a singly periodic surface since
integration of the Weierstrass integrand once around z = 0
adds a period to the third coordinate function. To see
larger pieces of the helicoid, increase the range of v, i.e.,
integrate more than once around z = 0. – The ’Cyclic
Associated Family Morph’ turns the Catenoid inside out.

The Henneberg surface is a simple surface with branch
points. These are at the 4th roots of unity since f has
zeros there, but g is not infinite at those points. Note
that the branch points lie on the parameter line u = 0, on
the F-image of the unit circle. The Henneberg surface has
Enneper ends at z = 0 and at ∞. – The default Cartesian
grid touches only one branch point so that the image is
less complicated than in the polar case.

The Enneper surfaces are parametrized by the full com-
plex plane, and are therefore the simplest minimal sur-
faces to represent graphically. Note that a change of f
by a unitary factor, exp(iϕ) · f(z) gives in general an iso-
metric but non-congruent surface of the associated family.
The Enneper surfaces are exceptional since all members
of the associated family are actually congruent. – For the
classical picture choose aa=2 and ’Cartesian Grid’. – For
the most general Enneper surface take f constant and g a
polynomial.



The Trinoid, bb = 3, has poles of f at the 3rd roots of
unity. The Weierstrass map F is therefore not defined at
those points. It is not obvious to see what happens at those
points since the polar coordinates that the user defined
surfaces use are not adapted to the situation. Compare the
case ee = 3 of the Symmetric kNoids in the list of 3DXM
minimal surfaces. – Choosing the default ’Cartesian Grid’
is most instructive for the Fournoid, our bb = 4 default.
As in all cases the ’Cyclic Associated Family Morph’ is
interesting.

Even the simplest surfaces can be given by Weierstrass
data from which one does not immediately recognize the
surface. Try:
g(z) = (zk − 1)/(zk + 1), f(z) = 0.8i(zk + 1)2,
−1.8 ≤ u ≤ 0.2, 0 ≤ v ≤ 2π, (k = 0, 1, 2, 3, 4).

H.K. TOC



About Ward Solitons *

The Ward equation, also called the modified 2 + 1 chiral
model is the following equation for a map
J : R2,1 → SU(n):

(J−1Jt)t − (J−1Jx)x − (J−1Jy)y − [J−1Jt, J
−1Jy] = 0.

This non-linear wave equation is obtained from a dimen-
sion reduction and a gauge fixing of the self-dual Yang-
Mills equation on R2,2. The Ward equation is an integrable
system, and has a Lax pair. We explain this next.

Let

u =
1

2
(t+ y), v =

1

2
(t− y)

be the light-cone coordinate system for the yt-plane, and
given smooth maps A and B from R2,1 to su(n), we con-
sider the following linear system for a map ψ : R2,1×C→
GL(n,C):

(λ∂x − ∂u)ψ = Aψ,(∗)
(λ∂v − ∂x)ψ = Bψ.

R. Ward showed that if ψ(x, u, v, λ) is a solution of (∗) and
satisfies the U(n)-reality condition

ψ(x, u, v, λ̄)∗ψ(x, u, v, λ) = I,
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then J(x, u, v) = ψ(x, u, v, o)−1 is a solution of the Ward
equation.

We call ψ an extended solution of J . The degree of ψ
is defined to be the number of poles for λ counted with
multiplicities. A solution J of the Ward equation is called
a Ward soliton if J has an extended solution ψ(x, u, v, λ)
that is rational in λ, ψ(x, u, v,∞) = I, and if for each t,
J is asymptotically constant as (x, y) approaches ∞. A
Ward soliton is called a k-soliton if the smallest degree of
extended solutions of J is k.

Ward used the solution of the Riemann-Hilbert problem
to write down all solitons whose extended solutions have
only simple poles. He also used a limiting method to con-
structed 2-solitons whose extended solution have one dou-
ble pole, and showed that these 2-solitons have non-trivial
scattering. Anand and Ioannidou-Zakrzewski found Ward
solitons whose extended solutions have only one pole of
multiplicities 2 and 3 (see the Anand-Ward Solitons sub-
menu of the Surfaces Catergory). Dai and Terng used
Bäcklund transformations and an order k limiting method
to construct all Ward solitons. Their method gives ex-
plicit formula for Ward solitons. In fact, given constant
z1, . . . , zr ∈ C \ R, positive integers n1, . . . , nr, and ratio-
nal functions v0, . . . , vk, they wrote down a k-soliton whose
extended solution has poles at λ = z1, . . . , zr with multi-
plicities n1, . . . , nr respectively. We call

(z1, . . . , zr, n1, . . . , nr)



the pole data of the Ward soliton. For detail of Dai and
Terng’s construction, we refer the reader to their paper
“Bäcklund transformations, Ward solitons, and unitons”.
This algorithm was used to write the code for the Ward
solitons in the 3D-XplorMath. The program shows the
wave profile of the energy density

E(x, y, t) = ||J−1Jx||2 + ||J−1Jy||2 + ||J−1Jt||2.

The default Morph shows a sequence of these profiles for
an increasing time ti for the SU(2) Ward solitons. A Ward
soliton with pole data (z1, . . . , zr, n1, . . . , nr) represents the
interaction of r solitons with pole data (z1, n1), . . ., (zr, nr)
respectively. The shapes of these r solitons are preserved
after the interaction, but with possible phase shift. How-
ever, the solitons with pole data (z, k) do not share this
common phenomenon of soliton equations. In fact, the
localized lumps scatter after interaction.

To use the program to see the wave profiles of the SU(2)
Ward solitons, you should be in the Surface Catergory
and make a selection from the Ward Solitons submenu of
the Surfaces menu. The submenu MultiSolitonI means
Ward k-soliton whose extended solution has a multiplic-
ity k pole at i=

√
−1, 3-solitonIIZ means Ward 3-soliton

whose extended solution has poles i, i, Z, and ... etc.
After choosing the Ward Solitons submenu, then you can
specify the pole locations and rational maps from the sub-
menu Ward Soliton Settings to construct the correspond-
ing Ward solitons. For simplicity of writing the codes, we



only wrote code for k-solitons with 1 ≤ k ≤ 4 and the
rational maps from C to C2 are of the form (1, ai(w)),
where ai(w) is a polynomial in w of degree less than 5.
You may specify the coefficients of these ai’s in the Ward
Soliton Settings. Since the maximum of the energy density
of these solitons is often large, you may choose a scaling
factor in the Settings menu. If you choose Energy Scale
Factor := 0.05, this means the wave profile you see from
the program is for 0.05E(x, y, t). If you want to see some
Quicktime movies made from this program, you may go to
www.math.neu.edu/~terng/WardSolitonMovies.html.

CLT
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About Anand-Ward Solitons*

Christopher Anand

Generally speaking, solitons are solutions to nonlinear wave
equations that exhibit particle-like behaviour, but the term
is frequently retricted further by demanding that the wave
equation be “integrable” in one of several technical senses
of that term. The earliest known soliton equations (Korte-
weg-DeVries, Sine-Gordon, Cubic Schroedinger, ...) were
all in one space dimension, and for a time it was even sus-
pected that soliton-like behavior could not occur in higher
dimensions.

The solutions in this subcategory are all pure soliton so-
lutions of a modified Chiral Model introduced by Richard
Ward. One ‘reason’ that this model is integrable is that
it is a reduction of the Yang-Mills equations, or the Bo-
gomolny equations in an indefinite signature. It is this
relationship which allows the solutions to be constructed
using twistor or inverse-scattering methods.

Twistor theory works by setting up a correspondence be-
tween analytic objects (e.g. solutions of differential equa-
tions) and certain geometric objects (e.g., complex analytic
functions with prescribed poles, holomorphic vector bun-
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dles). In our case, the correspondence is between those
solutions of Ward’s model that extend analytically to the
compactification of space-time (a highly restrictive ’bound-
ary condition at infinity’) and holomorphic bundles on a
two-dimensional, compact, complex manifold. In analogy
with Liouville’s theorem, stating that a bounded, holo-
morphic function on the complex plane is constant, Serre’s
GAGA principle states that certain objects on compact,
complex spaces, known a priori only to be complex ana-
lytic, are necessarily algebraic. Think of this as an exis-
tence theory. The next step is to find an efficient way to
represent the associated vector bundles. It turns out that
there is a nice representation in terms of “monads” (which
are matrices satisfying certain relations), and one can even
write the solutions and energy density down explicitly—
without any integrals or derivatives, in terms of the monad
data. This is how the pre-programmed solutions here have
been created, and it is how you can construct further so-
lutions by entering monad data using the Setup AW soli-
tons... dialogue.

To get solutions of Ward’s equations, the matrices must
satisfy the relation

α1 · γ − γ · α1 + b · a = 0.

You are responsible for checking this equation yourself.
There is also an additional nondegeneracy condition to in-
sure that the associated solution is not singular, and a
condition that corresponds to the solution being static,



but the description of these conditions is too complicated
to include here.

Under the Set Parameters... menu, you can also change
the way the energy density is displayed. The parameters
bb and cc scale distance and energy respectively; aa is time;
and dd is a cut-off value for the energy above which the
value ee will be plotted (this is because some solutions can
have very tall ”spikes” at certain times).

The full story, including the derivation of all these con-
ditions and the geometry behind the construction can be
found in my preprints at:

http://www.maths.warwick.ac.uk/~anand/preprints.html

Please address any questions to me at:

sendmail://anand@maths.warwick.ac.uk.

Surface Organisation
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Hydrogen Probability Densities*

for (n, l,m) = (1, 0, 0) to (n, l,m) = (3, 2, 2)

Point clouds, preferably in stereo, are used to visualize the
electron probability densities in a Hydrogen atom. Since
these densities are rotationally symmetric around the z-
axis, only a wedge of the density cloud is shown.

The Action Menu offers several viewing options:
The entry Show Coordinate Slices plays a sequence of
coordinate slices, first in polar coordinates, then in Carte-
sian coordinates.
The entry
Show Constant Density Surface as Point Cloud

shows that surface along which the density has its mean
value. One can morph the constant density surfaces with
the parameter ff . In some cases these surfaces have sev-
eral components inside each other. Therefore a stereo point
cloud gives a better impression than the raytrace version.
The entry Show Voxel Raytrace is the slowest option. It
is visually more impressive than the point cloud, but less
informative.
The entry Create returns to the default volume cloud.

The electron densities are of course listed in Physics texts.
For comparison with our visualizations we repeat them
here:

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/ Surface Organisation

http://3D-XplorMath.org/


In 3DXM we use the parameter ii for the Bohr radius a0.

(n,l,m)=(1,0,0):

density :=
(

exp(− r
a0

)
)2

,

(n,l,m)=(2,0,0):

density :=
(

(2− r
a0

) · exp( −r2 a0
)
)2

,

(n,l,m)=(2,1,0):

density :=
(
r
a0
· exp( −r2 a0

) · cos θ
)2

,

(n,l,m)=(2,1,1):

density :=
(
r
a0
· exp( −r2 a0

) · sin θ
)2

,

(n,l,m)=(3,0,0):

density :=
(

(27− 18 r
a0

+ 2( ra0 )2) · exp( −r3 a0
)
)2

,

(n,l,m)=(3,1,0):

density :=
(

(6− r
a0

) · ra0 · exp( −r3 a0
) · cos θ

)2

,

(n,l,m)=(3,1,1):

density :=
(

(6− r
a0

) · ra0 · exp( −r3 a0
) · sin θ

)2

,

(n,l,m)=(3,2,0):

density :=
(

( ra0 )2 · exp( −r3 a0
) · (3 cos2 θ − 1)

)2

,

(n,l,m)=(3,2,1):

density :=
(

( ra0 )2 · exp( −r3 a0
) · cos θ · sin θ

)2

,

(n,l,m)=(3,2,2):

density :=
(

( ra0 )2 · exp( −r3 a0
) · sin2 θ

)2

,

H.K. Surface Organisation



Part I: Platonic Solids *

Relations among them, Simple Truncations

Go To Page 1
Part II below: Archimedean Solids

includes: Cubeoctahedron, Icosidodecahedron, Buckyball
Part III below: DualPolyhedra

There are five (and only five) Platonic solids. Three of
them are easy to imagine — Cube, Octahedron and Tetra-
hedron — while the remaining two are more difficult: Icosa-
hedron and Dodecahedron. The earliest known models
date from the Stone Age.

What to do in 3D-XplorMath?

First, the program shows how the other four Platonic solids
are obtained from the Cube: Select first one of the other
polyhedra, then in the Action Menu:

Show Relation with Cube.

For the Octahedron one sees that its six vertices are the
midpoints of the faces of a cube; the Octahedron faces are
equilateral triangles. The Tetrahedron sits in the cube so
that its four vertices are vertices of the Cube, and the six
Tetrahedron edges are face diagonals of the Cube. The
Icosahedron can be placed inside a Cube so that its twelve
vertices lie on the six faces of the Cube: see the default
morph in 3DXM, preferably when Show Relation with

Cube is chosen. The Dodecahedron can be placed around
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a Cube so that its twelve pentagon faces rest on the twelve
edges of the cube. See again the default morph going from
the Rhombic Dodecahedron via the Platonic Dodecahe-
dron to a cube with subdivided faces.

Second, by cutting off appropriately the vertices or the
edges of a Platonic solid one obtains the simpler ones of the
Archimedean solids. These are polyhedra whose faces
are (several kinds of) regular polygons, whose edges all
have the same length and whose vertices all look the same.
Select in the Action Menu any of the three Truncations

and then do the associated default Morph. For example,
the Edge Truncations morph from one Platonic solid to
another one (which is called its dual).

Third, since our intuition handles two dimensions better
than three, it is interesting to project the Platonic solids
from their midpoints onto a circumscribed sphere. View
in Wire Frame and select in the Action Menu:

Show Central Projection to Sphere .
These two-dimensional spherical views of the Platonic solids
come very close to explaining why there are no other such
beautiful polyhedra.

Fourth, the Icosahedron and the Dodecahedron have very
beautiful Stellations, polyhedra that fascinated Kepler. Se-
lect (Action Menu): Create Stellated. Note that all the
mentioned views have their own default morphs. Kepler
imagined the stellated Dodecahedron as having pentagon
stars as faces. One can also select it in the Polyhedra Menu



as Kepler’s Great Dodecahedron. In 3DXM it is drawn
as a (negative) stellation of the Icosahedron.

Fifth, for the Cube and the Icosahedron there are two spe-
cial entries in the Action Menu when viewing these solids
in Wire Frame. For the Cube select Show Intersection

With Plane, preferably in one of the stereo modes. The
plane is represented by random dots and the dots inside
the Cube are deleted; the Cube can be rotated and moved
forward and backward, always showing its polygonal in-
tersection with the plane. For the Icosahedron select in
the Action Menu Add Borromean Link, preferably in one
of the stereo modes. Note how the boundaries of the em-
phasized rectangles are intertwined or linked. The edge
lengths of each rectangle are equal to the lengths of an
edge and a diagonal of a regular pentagon, thus showing
the relation of the Icosahedron inside the Cube with the
Golden Ratio. Also, the default morph of this image is
worth viewing.

Finally, stone objects with Platonic Symmetry were found,
mainly in Scotland. They were dated 2500 B.C. They
are carved from bigger stones, but they look as if they
were conceived as collections of balls. Therefore we have
added the Action Menu entry: Show As Stone Balls. In
Patch Display the balls are fine triangulations of the Bucky
Ball, in Wire Frame the balls are shown with random
dots. One can also view other sphere triangulations af-
ter one has selected (in Patch Display) Create Subdi-



vided: another entry appears: Triangulate Further.
Platonic Polyhedra

Part II: Archimedean Solids
Here is the definition again: All faces are regular polygons
(of up to three different kinds). All edges have the same
length. All vertices (with their outgoing edges) are con-
gruent. In addition to the five Platonic solids there are
twelve of them.

We have already seen the simplest ones: Truncate the ver-
tices of a Platonic solid; there are two possibilities, if some
portion of the edges remain this is called Standard Trun-

cation, and if the truncation cuts go through the mid-
points of the edges we have a Midpoint Truncation. One
can also truncate the edges; this deformation leads to
the same Archimedean solid if one starts from the Octa-
hedron or the Cube, and also if one starts from the Icosa-
hedron or the Dodecahedron. Two more are obtained if
one truncates the edges and the vertices; the deformation
is easier to observe if one uses the standard truncation on
either the Cubeoctahedron or the Icosidodecahedron. In
fact, not quite the standard truncation, because that would
make rectangles instead of squares from the truncated ver-
tices.

Finally there are the Snub Polyhedra. We could not find
what ’snub’ means in this context. We describe the con-
struction and call it ’to snub’. Each face of a Platonic
solid is scaled down from its midpoint and also rotated



around the midpoint. The ’snubbed’ polyhedron is the
convex hull of these deformed faces. This 2-parameter de-
formation can be adjusted to give a 1-parameter family
of polyhedra whose faces are either regular polygons or
isosceles triangles. In each family is an Archimedean solid.
A snubbed Tetrahedron is an Icosahedron, snubbed Cube
and Octahedron give the same Archimedean solid and also
snubbed Dodecahedron and Icosahedron agree.

One can probably understand all these truncations better
if one selects in the Action Menu

Snub Or Truncate Polyhedron In Polyhedron.

This will add the original polyhedron (as wire frame) to
the truncation.
Adapted Morphs: Each selection in the Action Menu
will cause that the default deformation, Morph in the An-
imation Menu, is adjusted to the Action Menu selection.

Platonic Polyhedra

Part III: Dual Polyhedra

Duality has the simplest definition for Platonic solids: The
convex hull of the centers of the faces is the dual poly-
hedron. The following definition works for Platonic and
Archimedean solids: Take the tangent planes to the cir-
cumscribed sphere at the vertices of the polyhedron; con-
sider them as the boundaries of halfspaces which contain
the polyhedron; the intersection of these halfspaces is the
dual polyhedron. For example the rhombic dodecahedron
is dual to the cubeoctahedron. Similarly, consider convex



polyhedra whose inscribed sphere touches all faces; the
convex hull of the contact points of the faces with the in-
scribed sphere is the dual polyhedron.
These definitions of duality are unique up to scaling. For a
general convex polyhedron definitions are no longer unique
up to scaling. Choose an interior point and project the
polyhedron radially onto a sphere around the chosen point;
one obtains a tessalation of the sphere with the same com-
binatorial properties as the boundary of the polyhedron;
consider on the sphere the Dirichlet or Voronoi domains of
the vertices (the points which are closer to one vertex than
to all others); these domains form the dual tessalation; any
polyhedron whose radial projection to the sphere has the
same combinatorics as this dual tessalation, is called a dual
polyhedron to the given one.

In 3D-Xplormath one can view all Archimedean solids in-
side their dual polyhedra: First select one of the Platonic
solids from the Polyhedra Menu. Then check in the Action
Menu the entry:

Show All Polyhedra Inside Their Duals .
Now, each of the provided truncations gives an Archimedean
solid, shown inside its dual polyhedron. These images can
be morphed, including the surrounding dual polyhedra.

H.K. Platonic Polyhedra



Complex Functions Or Conformal Maps

Go To Page 1

Visualisation of Conformal Maps

Elementary Functions (Click on Names)

1.) Complex Square z 7→ z2

2.) Exponential Map z 7→ exp(z)
3.) Complex Inverse z 7→ 1/z
4.) Confocal Ellipses from z 7→ z + 1/z
5.) Rolling Curves from Polynomials z 7→ zee + ee · z
6.) Fractional Linear Maps z 7→ (a · z + b)/(c · z + d)

7.) Hyperbolic Translations z 7→ (z+cc)
(1+cc·z)

8.) Nonconformal Complex Map z 7→ conj(z) + aa · z2

9.) Complex Square Root
√

(z2) = ±z
10.) Complex Logarithm log(exp(z)) = z + 2πi · Z
11.) Complex Sine sin(z) = (exp(iz)− exp(−iz))/2i
12.) Complex Tangent Hyperbolicus
13.) Stereographic Projection and its Importance

Elliptic Functions

14.) Jacobi Type Elliptic Functions
15.) Symmetries Of Elliptic Functions



Visualization of Conformal Maps *

Here we deal with complex numbers, C, and with complex-
valued functions from domains D ⊂ C to C. The functions
are assumed to be differentiable in the complex sense. This
means that differences f(z + h) − f(z), z, h ∈ C can be
well approximated by

complex linear maps: lz(h) = c(z) · h, c(z) ∈ C.

For each z the constant c(z) is called derivative of f at z
and written as c(z) = f ′(z).
For visualization, C and R2 are identified by writing the 1st
basis vector

(
1
0

)
of R2 as 1 and the second basis vector

(
0
1

)
as i. The point

(
x
y

)
∈ R2 means the complex number x+i·y.

Nonzero complex numbers can be written as c = |c| · c|c| ,
where |c| ∈ R is called the absolute value of c and u := c

|c|
is a unitary complex number. The complex linear map
l(z) := |c| ·z is in R2 ordinary scaling by the factor |c|. The
complex linear map l(z) := u · z, viewed in R2, is distance
preserving: |l(w)−l(z)| = |u·(w−z)| = |u|·|w−z| = |w−z|.
For u =/ 1 we have only the fixed point 0:

l(z) = z ⇔ (u− 1) · z = 0⇔ z = 0.

Multiplication in C by a unitary complex number u =/ 1 is
therefore a rotation around the origin. Together with the
scaling by |c| we have: Complex linear maps l(z) := c · z
preserve angles, they are ‘conformal’. Multiplication by i,

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/ Conformal TOC

http://3D-XplorMath.org/


considered in R2, is counterclockwise 90◦ rotation. Evi-
dently this is a square root of multiplication by −1. Thus
the geometric interpretation removes all the mystery from
a square root of −1. Computation with complex symbols
started in the 16th century, but it was done reluctantly un-
till, around 1800, the geometric interpretation was found
and accepted rapidly. In the next 50 years the field of com-
plex analysis exploded to great sophistication.
If we map two intersecting curves with a complex differen-
tiable function f then the tangents of these curves at the
intersection point w are mapped by the derivative approx-
imation of f . If f ′(w) =/ 0 then the image curves intersect
with the same angle as the preimage curves. We say: the
function f is a conformal map.
Conformality is very important because real differentiabil-
ity plus preservation of oriented angles implies complex dif-
ferentiability. The words complex function and conformal
map are therefore used interchangebly. Our visualizations
try to emphasize conformality as clearly as possible.
A linear map (in real dimension two) is already conformal,
if two non-parallel right angles are preserved, for example
the angles of the edges of a square and the angle of its
diagonals. Because of this fact our visualizations decorate
the domain with a square grid and we show this grid and
its image. To make the image grid as large as possible, it
fills the window of 3D-XplorMath. For a comparison with
the preimage one has to press the Option and Command

keys and then press and release the (left) Mouse Button.



Showing a domain grid and its image grid visualizes com-
plex functions as maps. This is not very common, but oc-
curs already in Maxwell’s work. The image grid shows very
clearly the points where the derivative vanishes. The Ac-
tion Menu entry Show Derivative At Mouse Point shows
the linear approximation of the function at the mouse point
- in other words it shows, how the derivative scales and ro-
tates the vicinity of the preimage of the mouse point.

The conformal image of a square grid has grid meshes
which are “squares” with slightly curved edges. The ex-
ponential map, for example, transforms a cartesian square
grid into a “conformal polar square grid”. Its grid meshes
look more and more like squares the more grid lines one
displays by choosing uResolution, vResolution larger.
For some functions, e.g. z 7→ z + 1/z, it is therefore bet-
ter to choose such a conformal polar grid in the domain
instead of a Cartesian square grid whose edges are lines
parallel to the coordinate axes. – The non-conformal map
z 7→ z̄ + aa · z2 shows that non-conformality can easily be
recognized in the image grid of a cartesian grid with small
square grid meshes: The grid meshes of the image are in
general parallelograms.
To the domain grid one can, in the Action Menu, add lines,
intervals or circles. Their images appear with the image
grid. For example, if a circle passes through a point where
the derivative has a simple zero, then the interior 180◦ an-
gle of the circle at that point is doubled to a 360◦ interior
angle of the image curve. Note that the image grids for all



conformal maps look very similar in the immediate vicinity
of a simple zero of the derivative of the map.
Many functions show their symmetries better when their
image grid is viewed (via Stereographic Projection) on the
Riemann Sphere instead of the Gaussian Plane. The sec-
ond entry of the Action Menu toggles between these two
representations. The Riemann Sphere can also be viewed
in anaglyph or in cross-eyed rendering.
For most functions one can switch between a cartesian

grid in the domain and a polar grid. The different grids
bring out different properties of the function. An excep-
tion are the elliptic functions: the domain is always one
half fundamental parallelogram of their torus and the grid
lines are parallel to the edges of the parallelogram; the im-
age grid covers the Riemann sphere once.
The Conformal Maps Menu offers the possibility to pre-

compose or postcompose the selected complex function
with a choice of six other functions, thus increasing the
collection of immediately available complex maps.

H.K. Conformal TOC



Complex Square z → z2 *

We use the parameter dependent mapping z 7→ aa(z −
bb)ee + cc, with the default values aa = 1, bb = 0, cc = 0,
and ee = 2. The default Morph joins z2 to the identity,
varying ee ∈ [1, 2].

Look at the discussion in “About this Category” or Visu-
alisation of Conformal Maps for what to look at, what to
expect, and what to do.

Just as the appearance of the graph of a real-valued func-
tion x 7→ f(x) is dominated by the critical points of f ,
it is an important fact that so also, for a conformal map,
z 7→ f(z), the overall appearance of an image grid is very
much dominated by those points z where the derivative f ′

vanishes. Most obviously, near points a with f ′(a) = 0 the
grid meshes get very small and, as a consequence, the grid
lines usually are strongly curved. If one looks more closely
then one notices that the angle between curves through
a is not the same as the angle between the image curves
through f(a) (recall: f ′(a) = 0). We will find this general
description applicable to many examples.

One should first look at the behaviour of the simple qua-
dratic function z → z2 near z = 0, both in Cartesian
and in Polar coordinates. One sees that a rectangle, which

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/ Conformal TOC

http://3D-XplorMath.org/


touches z = 0 from one side is folded around 0 with strong-
ly curved parameter lines, and one also sees in Polar coor-
dinates that the angle between rays from 0 gets doubled.
The image grid in the Cartesian case consists of two fami-
lies of orthogonally intersecting parabolas.

One should return to this prototype picture after one has
seen others like z → z + 1/z, z → z2 + 2z and even the
Elliptic functions and looked at the behaviour near their
critical points.

The first examples to look at, (using Cartesian and Polar
Grids) are z → z2, z → 1/z, z →

√
z, z → ez.

H.K. Conformal TOC



The Complex Exponential Map z 7→ ez *

Our example is z 7→ exp(aa(z − bb)) + cc, its parameters
are set to aa = 1, bb = 0, cc = 0; aa gets morphed in C.
See the functions z 7→ z2, z 7→ 1/z and their ATOs first.

The complex exponential function z 7→ ez is one of the
most marvellous functions around. It shares with the real
function x 7→ exp(x) the differential equation exp′ = exp
and the functional equation exp(z +w) = exp(z) · exp(w).
This latter identity implies that one can understand the
complex Exponential in terms of real functions, for if we
put z = x+ i · y then we have

exp(x+ i · y) = exp(x) · exp(i · y) =

exp(x) · cos(y) + i · exp(x) · sin(y).

This says that a Cartesian Grid is mapped “conformally”
(i.e., preserving angles) to a Polar Grid: the parallels to the
real axis are mapped to radial lines, and segments of length
2π that are parallel to the imaginary axis are mapped to
circles around 0. This function is therefore used to make,
in the Action Menu, the Conformal Polar Grid. Observe
how justified it is to describe the image grid as “made out
of curved small squares”.

If you have seen z 7→ ez and z 7→ z+ 1/z then now look at
z 7→ sin(z). H.K.
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The Complex Map z 7→ 1/z *

The actual mapping for this example is z 7→ aa/(z−bb)+cc,
with the default values aa = 1, bb = 0, and cc = 0.

Look at function and ATO Complex Square z 7→ z2 first.

The function z 7→ 1/z should be looked at both in Carte-
sian and Polar Grids. The default Morph varies bb ∈ [0, 1].

Notice first:

1) The real axis, imaginary axis and unit circle are
mapped into themselves,

2) the upper half plane and the lower half plane are in-
terchanged, and

3) the inside of the unit circle and its outside are also
interchanged.

This is best seen in the (default) Conformal Polar Grid. In
the Cartesian Grid one should in particular observe that
all straight parameter lines (in the domain) are mapped to
circles (some exceptions, like the real axis, remain lines).
The behaviour of these circles near zero can be looked at
as an image of the behaviour of the standard Cartesian
Grid near infinity. In fact all circles are mapped to circles
or lines.

Examples to look at after this are
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z 7→ (az + b)/(cz + d) and z 7→ (z + cc)/(1 + c̄cz),

both of which can be obtained from z → 1/z by composi-
tion with translations z → z+a or scaled rotations z → a·z.
Therefore all of these so-called “Möbius transformations”
map circles and lines to circles and lines.

H.K. Conformal TOC



Complex Map z 7→ z + aa/z *

See the functions z → z2, z → 1/z, z → z2 + 2z, z → ez

and their ATOs first. Use the default Morph, aa ∈ [0, 1].

This function is best applied to a Conformal Polar Grid.
The image of the outside of the unit circle is the same as
the image of the inside of the unit circle, namely the full
plane minus the segment [−2, 2]. The unit circle is mapped
to this intervall, each interior point w = 2 ·cos(φ) ∈ [−2, 2]
appears twice as image point, namely of z = exp(±iφ).

The default choice shows how the outside of the unit disk
is mapped to the outside of the interval [−2, 2]. If we note
that f ′(±1) = 0 then we understand this behaviour: the
interior 180◦ angle at these critical points ±1 of the outside
domain is again doubled to become the angle of the image
domain (outside [−2, 2]) at ±2.

A domain circle zR(φ) = R exp(iφ) is mapped to the image
ellipse (R+ 1/R) cos(φ) + i(R−1/R) sin(φ), and a domain
radius zφ(R) = R exp(iφ) is mapped to the Hyperbola (R+
1/R) cos(φ) + i(R− 1/R) sin(φ). The image grid therefore
consists of a family of ellipses that intersect orthogonally a
family of hyperbolae, and all these Conic Sections (see the
Plane Curves Category) are “confocal”, i.e., they have the
same Focal Points, namely at +2 and −2.
H.K.
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Complex Map z 7→ aa · zee + ee · z *

(Default: z → z2 + 2z)

Look at the functions z → z2, z → 1/z and their ATOs
first. The default Morph varies aa ∈ [0, 1.2] for ee = 4.

Of course, since z2 + 2z + 1 = (z + 1)2, this function is
not very different from the first example z → z2. But
the change puts the critical point to −1 on the unit circle
(f ′(−1) = 0). Therefore, if one looks what this map does
to a Polar Grid, one can study the behaviour near the
critical point z = −1 with a different grid picture than
in the first example. Circles outside the unit circle are
mapped to Limaçons (Plane Curves Category, Cardioid
and Limacon) which wind around−1 twice. The unit circle
is mapped to a Cardioid and one can see the interior angle
of 180◦ of the unit circle at −1 mapped to the interior
angle of 360◦ of the Cardioid at −1. Also one can see
that a neigbourhood of −1 is strongly contracted by this
function.
See the function z → z + 1/z next.

H.K.
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Fractional Linear Maps *

or Möbius Transformations
z 7→ (a · z + b)/(c · z + d)

See the functions z 7→ z2, z → 1/z and their ATOs first.
The default Morph uses a conformal polar grid and varies
a ∈ [1, 2], c ∈ [0, 1].

These functions are called fractional linear maps or Möbius
transformations. They differ from the map z 7→ 1/z by
composition with a translation z 7→ z + a or scaled rota-
tions z 7→ a · z. As discussed for z 7→ 1/z they transform
lines and circles to lines and circles.

The default special case is z 7→ (z − 1)/(z + 1). It is best
understood in the (default) Conformal Polar Grid. Since
it maps 0 to −1 and ∞ to +1, one can see the Polar co-
ordinate centers moved from 0,∞ to −1,+1. This picture
is the first step towards understanding the complex (or
“Gaussian”) plane plus the point at infinity as the “Rie-
mann Sphere”. Use the 2nd entry in the Action Menu:
Show Image On Riemann Sphere.

See also the other Möbius transformations from the Con-
formal Maps menu.

H.K.
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The Möbius Transformation *

z → (z + cc)

(1 + cc · z)
of the unit disk.

Look at the Möbius transformation z → (a·z+b)
(c·z+d) and its

ATO first. The default Morph varies cc ∈ [−0.9, 0.9].

This function maps the interior of the unit disk bijectively
to itself, for every choice of cc with |cc| < 1. The behaviour
outside of the unit disk is obtained by reflection in the unit
circle, i.e., z → 1/z̄.

These maps have an interesting geometric interpretation:
they are isometries for the “hyperbolic metric” on the unit
disk. To understand this further, imagine that the unit
disk is a map of this two-dimensional hyperbolic world
and that the scale of this map is not a constant but equals
1/(1 − zz̄). This means that we do not obtain the length
of a curve t → z(t) as in the Euclidean plane by the inte-
gral

∫
|z′(t)|dt—we have to take the scale into account and

define its hyperbolic length by
∫
|z′(t)|/(1 − |z(t)|2)dt. It

is this hyperbolic length of curves that is left invariant by
the “hyperbolic translations” z → (z + cc)/(1 + cc · z).
Locally the Pseudosphere (see: Surfaces of Revolution)
has the same hyperbolic geometry.
H.K.
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Nonconformal Complex Map z 7→ conj(z) + aa · z2 *

Look first at other functions and their ATOs, for example
z → z2 and exp. The default Morph varies aa ∈ [0, 1].
The map z 7→ conj(z) + aa · z2 is a map from the complex
plane to itself. The harmless looking “conj” is responsible
for the fact that this map is not complex differentiable and
therefore not a “conformal” map, that is, a map for which
the angles between any two curves and their images are
the same. It is clearly visible in the image that the squares
of the domain grid are mapped to rectangles and even to
parallelograms in the range.

The image also shows two
“fold lines”. We observe
that interior points of the
domain are mapped so that
they lie on the boundary of
the image. For a complex
differentiable function this
can never happen as is
asserted by the
Open Mapping Theorem.
See the default morph.

H. K.
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The Complex Map z 7→
√
z *

See the functions z 7→ z2, z 7→ 1/z and their ATOs first.
The map z 7→

√
z should be looked at both in Cartesian

and Polar Grids and in the default morph zee, ee ∈ [ 1
2 , 1].

Note that since this function is the inverse of z → z2, we
expect to see related phenomena: circles around 0 go to
circles around 0, radial lines from 0 go to radial lines from
0, but now with half the angle between them (since we
look at the inverse map). A neigbourhood of 0 was very
much contracted by z → z2, now we see the opposite, the
distance of points from zero is increased very much (beyond
any Lipschitz bound).
A more complicated aspect is the fact that the function
z 7→

√
z is not really a well defined map until we make

some choices. Namely observe: all z =/ 0 have two distinct
square roots, differing by a factor of −1.

The function
√
z used by 3D-XplorMath maps the upper

half plane to the first quadrant, the (strict) lower half
plane to the fourth quadrant, and the negative real axis
to the positive imaginary axis—so there is no continuity
from above to below the negative real axis (which is there-
fore called a “branch cut”).
The Cartesian grid lines are mapped to two families of hy-
perbolae which intersect each other orthogonally.
H.K.
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The Complex Logarithm *

z 7→ log z

Look at the function z → ez and its ATO first. The default
Morph shows a · log(z) + (1− a) · z for a ∈ [0, 1].

The complex Logarithm tries to be the inverse function of
the complex Exponential. However, exp is 2πi-periodic, so
such an inverse can only exist as a multivalued function.

From the differential equation exp′ = exp follows that the
derivative of the inverse is not multivalued and in fact very
simple:

log′(z) = 1/z.

Integration of the geometric series

1/z = 1/(1− (1− z)) =
∑
k(1− z)k

=
(∑

k −(1− z)k+1/(k + 1)
)′

gives the Taylor expansion around 1 of log. The so called
“principal value” of the complex Logarithm is defined in
the whole plane, but slit along the negative real axis, for
example by integrating the derivative log′(z) = 1/z in that
simply connected domain along any path starting at 1.
Different values of log z differ by integer multiples of 2πi,
e.g. i = exp(πi/2) implies log i = πi/2 + 2πi · Z.

H.K.
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The Complex Sine z → sin(z) *

Look at the functions z → z2, z → 1/z, z → z2 + 2z,
z → ez and their ATOs first. The default Morph varies the
family fa(z) = a · sin(z) + (1− a) · z for a ∈ [0, 1].

While the behaviour of the one-dimensional real functions
x 7→ exp(x) and x 7→ sin(x) are quite dissimilar (exp is
convex and positive, while sin is periodic and bounded),
as complex functions they are very closely related:

sin(z) =
exp(iz)− exp(−iz)

2i
,

an identity that explains why the image grid under sin of
the default Cartesian grid looks exactly like the image grid
under z → z+ 1/z applied to a Conformal Polar Grid out-
side the unit circle. For if we put w(z) := exp(iz)/i, then
sin(z) = (w(z) + 1/w(z)))/2, and: recall that exp maps
the standard Cartesian Grid to the Conformal Polar Grid
around 0. The parameter curves in the image grid of sine
are therefore the same orthogonal and confocal ellipses and
hyperbolas as in the image of z 7→ z + 1/z.

H.K.
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Hyperbolic Tangent*

Definition:

tanh(z) :=
exp(z)− exp(−z)
exp(z) + exp(−z)

=
w − 1

w + 1
with w = exp(z)2

tan(z) := −i · tanh(i z) =
sin(z)

cos(z)

tanh(aa · z/2) + bb · z/2, bb = 1− aaIn 3DXM:

aa = 1, bb = 0, morph: 0 ≤ aa ≤ 1.default:

The default visualization of this function is on the standard
Cartesian Grid. The exponential map transforms this grid
into a polar grid. The rational map w 7→ (w − 1)/(w + 1)
sends the polar centers at 0,∞ to polar centers at −1, 1.
The default morph connects z/2 7→ tanh(z/2) to the iden-
tity.
Recall that all real functions that have power series repre-
sentations can be extended to be functions over part of the
complex plane. Of course this includes all functions that
have simple definitions in terms of the exponential map.

H.K.
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Stereographic Projection and its Importance *

Stereographic projection was invented for making maps of
the earth and the celestial sphere. It is an angle preserv-
ing map of the sphere minus one point onto the Euclidean
plane.
Complex differentiability (of maps from the plane to the
plane) is the same as real differentiability plus preserva-
tion of oriented angles (except were the derivative van-
ishes). Angle preserving differentiable maps are therefore
important for the theory of complex functions. The stere-
ographic projection can be interpreted as mapping the 2-
sphere to the Euclidean plane, compactified by a point at
infinity. All the complex rational functions can be ex-
tended to infinity, i.e. they can be considered as differ-
entiable, angle preserving maps from the 2-sphere to the
2-sphere. The stereographic projection turns this “can
be considered as” into a simple explicit relation. The 2-
sphere, in this context, is called the Riemann Sphere and
the image plane is called the Gaussian Plane.

In 3D-XplorMath a 3D image of the stereographic projec-
tion can be reached via the last entry of the Action Menu
in the Conformal Map Category. Stereographic projection
is defined as the central projection from one point on the
sphere onto the opposite tangent plane.
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Formulas for the Stereographic Projection

Algebraically it is slightly more convenient to map the
sphere not to the opposite tangent plane but to the paral-
lel plane through the midpoint. More explicitly, the unit
sphere S2 ⊂ R3 is projected from (0, 0,−1) to the plane
{z = 0} (and similar formulas work in all dimensions):

St(x, y, z) := 1
1+z · (x, y, 0), where x2 + y2 + z2 = 1.

because the three points involved lie on a line:

1
1+z ·

x

y

z

+ z
1+z ·

 0

0

−1

 =


x

(1 + z)
y

(1 + z)

0

 =:

 ξ

η

0

 .

The inverse map is given by:

St−1(ξ, η) := 1
1+ξ2+η2 ·

 2ξ

2η

1− ξ2 − η2

 ∈ S2,

because, again, the three points lie on a line:

2
1+ξ2+η2 ·

 ξ

η

0

+ −1+ξ2+η2

+1+ξ2+η2 ·

 0

0

−1

 = St−1(ξ, η) =

1
1+ξ2+η2 ·

 2ξ

2η

1− ξ2 − η2

 .



Claim: Stereographic Projection
maps circles on S2 to circles and lines in the plane.

The case of lines is easier: The line in the image plane and
the projection center define a plane. This plane intersects
the sphere in the preimage circle of the line. – In other
words: all circles on the sphere which pass through the
projection center are mapped to lines.

For every circle {(ξ, η); (ξ − m)2 + (η − n)2 = r2} in the
image plane one can easily compute the plane of the preim-
age circle, while the other direction needs a case distinction
because of the lines.
We put ξ2 +η2 := 2mξ+ 2nη+ r2−m2−n2 into the third
component of the preimage formula. Then clearly

(1 + ξ2 + η2) · (z +mx+ ny + r2 −m2 − n2 − 1) = 0,

which shows the equation for the plane of the preimage.

Claim: Stereographic Projection preserves angles.

Through every point p ∈ S2 and tangential direction v
there exists a circle on the sphere which passes through
the projection center and through p and is tangential to
v. Every such circle is mapped to a line which is parallel
to the tangent of that circle at the projection center. The
image lines of two such circles therefore intersect with the
same angle as the two preimage circles, and the two preim-
age circles were chosen to represent an arbitrary angle on
the sphere. – One can also prove this by computing with
the derivative of the stereographic projection.



The image in 3D-XplorMath shows a nice proof of why
circles are mapped to circles. A circle on the sphere and
the projection center define a quadratic cone (unless the
circle passes through the center and the image is a line).
In general, therefore, the image of the circle is an ellipse.
And all planes parallel to the image plane cut this cone in
similar ellipses.

To prove that they are circles we show that their axes are
equal. We add the line which joins the projection center
and the midpoint of the image ellipse and we intersect
it, at m, with the diameter of the circle (on the sphere)
that is in the symmetry plane of the figure. Now consider
the ellipse which intersects the cone in the parallel plane
through m. Its axis orthogonal to the symmetry plane and
the mentioned diameter of the circle are two intersecting
secants of the circle. For their two subsegments holds:



axisA2 = D1 · D2. The other, axisB, has its two halfs as
edges of similar triangles which also have the edges D1, D2.
So we conclude D1 · D2 = axisB2, hence axisA = axisB.
– Note that the three shaded triangles are similar: two of
them are bounded by parallel segments and the bottom
triangle has the angle at the cone vertex equal to the angle
of the top triangle opposite axisB.

A remarkle property of the formulas for stereographic pro-
jection and its inverse is: They map points with rational
coordinates to points with rational coordinates! For exam-
ple, if we stereographically project a tangent line to the
unit circle, then the rational points on the line give us all
rational points on the circle! Multiply (p/q)2 + (s/t)2 = 1
by the denominators to get all Pythagorean triples.

A differential geometric result in Dimension 3 and higher
says: Any angle preserving map between spaces of constant
curvature maps planes and spheres to planes and spheres.
For people with that background it is therefore obvious
that stereographic projection maps circles to circles.

In 3D-XplorMath one has stereo vision available so that
one can see visualizations of images on the Riemann sphere
in 3D. This shows the symmetries, for example, of the
doubly periodic functions much more clearly than their
images in the Gaussian plane do.

H.K. Conformal TOC



Elliptic Functions of Jacobi Type *

What to do in 3D-XplorMath at the end of this text.

Elliptic functions are doubly periodic functions in the com-
plex plane. A period of a function f is a number ω ∈ C
such that f(z) = f(z + ω) for all z ∈ C. Doubly peri-
odic means that the function has two periods ω1, ω2 with
ω1/ω2 /∈ R. The set of all period translations is a lattice
Γ, and Γ has some parallelogram as fundamental domain.
Period translations identify parallel edges of this parallel-
ogram to a torus and elliptic functions can therefore be
viewed as functions on such a torus or equivalently as con-
formal maps from the torus to the Riemann sphere.
The simplest such functions are two-to-one maps from the
torus to the sphere. They have either one double pole
and are not very different from the Weierstrass ℘-function:
f(z) = a·℘(z)+b, or they have two simple poles; the oldest
of these are Jacobi’s functions sn, cn, dn, more below.
These doubly periodic functions have various properties
in common with the singly periodic trigonometric func-
tions. They are inverse functions of certain integrals and
therefore are solutions of first order ODEs, just like the in-
verse function of

∫ z
0

1/
√

1− ζ2dζ is a solution of the non-
Lipschitz ODE f ′(z)2 = 1−f(z)2. And, as in this trigono-
metric case, differentiation of the first order ODE gives a
second order ODE which is Lipschitz, here f ′′(z) = −f(z).
The trigonometric functions have more symmetries than
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their translations. These symmetries give all values from
the values on [0, π/2] × i · R. For the two-to-one elliptic
functions all values occur already on half a torus and the
further symmetries compute all these values from the val-
ues on one eighth of the torus. If the torus happens to be
rectangular, it has further symmetries: reflections which
are anticonformal. In this case, from the values on one
sixteenth of the torus, one can obtain all other values via
Möbius transformations. And, one can define interesting
elliptic functions with the Riemann mapping theorem:
The rectangle in the first quadrant of the picture below is
one sixteenth of a rectangular torus. The Riemann map-
ping theorem is used to map this rectangle to the quarter
unit circle in the first quadrant of the second picture. Rie-
mann’s theorem allows to specify that three corners of the
rectangle go to 1, 0, i and at the 4th corner the derivative
vanishes and two edges are mapped to the quarter circle:

Torus 1
4 -fundamental domain Image of JD-function

The extension of this definition to a two-to-one map from



the torus to the (Riemann) sphere is made possible by
Schwarz Reflection. Its simplest version, for complex power
series f(z) =

∑∞
k=0 akz

k with ak ∈ R, says f(z̄) = f(z).
We use the next step: Instead of reflection in R, reflection
in any straight or circular boundary arc (in domain and
range) extends the definition of the function.
While all rational functions can be obtained by rational op-
erations from the single polynomial P (z) = z, one needs
two elliptic functions on a given torus to obtain all others
by rational operations from these. Two choices for such a
second function are obtained if one maps three other ver-
tices of the rectangle in the first quadrant to 0, 1, i on the
quarter circle in the first quadrant (but always origin to
origin). In each case the derivative of the map vanishes at
the last corner and the 90◦ angle between adjacent edges
is opened to the 180◦ angle between the image arcs:

Image of JE-function Image of JF - or sn-function

The three functions JD, JE , JF were developed in work on



minimal surfaces. In this context they have two advan-
tages over Jacobi’s sn,cn,dn:
a) JD, JE , JF are defined on the same torus while sn,cn,dn
are defined on three different tori, which are closely re-
lated, namely doubly covered by a common rectangular
torus. On this larger rectangular torus Jacobi’s functions
are of degree 4.
b) At points z1, z2 of the torus which are related by a sym-
metry of the four branch points of JD, JE or JF , the val-
ues J(z1), J(z2) are related by isometries of the Riemann
sphere, while for sn, cn, dn the relations between the values
are by more general Möbius transformations. In applica-
tions to minimal surfaces such isometric relations translate
into symmetries of the minimal surface, while Möbius re-
lations do not.
Example: On each rectangular torus we have Riemann’s
embedded minimal surface and its conjugate; the Gauss
map of these surfaces is the geometrically normalized Weier-
strass ℘-function (denoted ℘g), not the original ℘-function.
We have ℘g = JE · JF . If σ is a 180◦ rotation around a
midpoint between the double zero and double pole of ℘g,
then ℘g(σ(z)) = −1/℘g(z).
Jacobi’s sn-function and our JF -function (on rectangular
tori) are very closely related:
The branch values of sn are {±1,±k}, modul m = k2.
The branch values of JF are {±F,±F−1}, F :=

√
k.

The fundamental domain of sn is such that sn′(0) = 1.
The fundamental domain of JF is such that J ′F (0) = 2

F+1/F .



The function dn is also defined on a rectangular torus and
has real branch values {±1,±

√
1− k2}.

The function cn is not defined on a rectangular torus.
cn(0),dn(0) =/ 0, cn′(0) = 0, dn′(0) = 0.

On non-rectangular tori we cannot define Jacobi type el-
liptic functions by the Riemann mapping theorem.
In Symmetries of Elliptic Functions we construct them
with a more abstract tool: One can rotate any parallelo-
gram torus by 180◦ around any of its points. This sym-
metry has four fixed points which are the vertices of a
parallelogram with half the edgelength as the fundamental
domain of the torus.
The quotient by such a symmetry is a conformal sphere!

The uniformization theorem of complex analysis states that
every conformal sphere is biholomorphic to the Riemann
sphere. Therefore we can make the quotient map into a
function by specifying three points on the torus and call
their images on the Riemann sphere 0, 1,∞. Example:

Torus 1
4 -fundamental domain Image of JD-function



180◦ rotation of the torus around the edge midpoints of the
quarter domain and the corresponding 180◦ Möbius rota-
tions extend the shown portion to a two-to-one conformal
map from the torus to the sphere.
Our computation of these images uses the ODE. We scaled
the function so that its branch values are {±B,±B−1}.
Our three Jacobi type functions JD, JE , JF satisfy the ODE:

(J ′)2 = J ′(0)2 ·
(
J4 − (B2 +B−2) · J2 + 1

)
.

The two functions on both sides of the equality sign agree
because they have the same zeros and poles, hence are
proportional, and J ′(0)2 is the correct proportionality fac-
tor. Differentiation of this ODE and cancellation of 2J ′

give the more harmless 2nd order nonlinear ODE (which
is needed because Runge-Kutta cannot integrate the 1st
order ODE in the vicinity of the zeros of the right side,
called the branch values of J):

J ′′ = J ′(0)2 ·
(
2J2 − (B2 +B−2)

)
· J.

These equations can be used for JD, JE , JF . To be on the
same torus one has to transform the branch values as:

E =
D − 1

D + 1
, F = i · D − i

D + i
, F = −E − i

E + i
,

and to use the same scale for the fundamental domain:

J ′D(0) = 1, J ′E(0) =
D − 1/D

2i
, J ′F (0) =

D + 1/D

2
.



In 3D-XplorMath the morphing parameter for Jacobi’s sn
is the modul m and for JD, JE , JF it is the branch value
D of JD in the 1st quadrant. Note that |D| = 1 for rect-
angular tori and Re(D) = Im (D) > 0 for rhombic tori.
Users cannot change the size of the domain of elliptic func-
tions, it is always one half of the torus, chosen so that the
values cover the Riemann Sphere once. In the domain we
use a grid made up of eight copies of one sixteenth of the
torus. The number of grid lines is the same in both di-
rections so that the grid meshes are proportional to the
fundamental domain of the torus. The default picture is,
as always for our conformal maps, the image grid and the
grid meshes show approximately the conformal type of the
torus.
If one selects in the Action Menu Show Image on Riemann

Sphere one can see the symmetries of these elliptic func-
tions more clearly.
The entry Show Inverse Function in the Action Menu
offers a second visualization. It assumes that standard po-
lar coordinates on the Riemann Sphere are well known.
The preimage of this polar grid is shown. Note that the
preimages of all latitudes – except the equator – are pairs
of congruent smooth closed curves. The preimage of the
equator consists of four squares. The preimages of the
northern and southern hemissphere are therefore easily
recognized parts of the torus. – This visualization is com-
pleted only for rectangular tori.
H.K. Conformal TOC



Symmetries Of Elliptic Functions *

[The approach below to elliptic functions follows that
given in section 3 of ”The Genus One Helicoid and the
Minimal Surfaces that led to its Discovery”, by Da-
vid Hoffman, Hermann Karcher, and Fusheng Wei,
published in Global Analysis and Modern Mathe-
matics, Publish or Perish Press, 1993. For conve-
nience, the full text of section 3 (without diagrams)
has been made an appendix to the chapter on the
Conformal Map Category in the documentation of
3D-XplorMath.]

An elliptic function is a doubly periodic meromorphic func-
tion, F (z), on the complex plane C. The subgroup L of C
consisting of the periods of F (the period lattice) is isomor-
phic to the direct sum of two copies of Z, so that the quo-
tient, T = C/L, is a torus with a conformal structure, i.e.,
a Riemann surface of genus one. Since F is well-defined
on C/L, we may equally well consider it as a meromorphic
function on the Riemann surface T .

It is well-known that the conformal equivalence class of
such a complex torus can be described by a single complex
number. If we choose two generators for L then, without
changing the conformal class of C/L, we can rotate and

* This file is from the 3D-XplorMath project. Please see:
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scale the lattice so that one generator is the complex num-
ber 1, and the other, τ , then determines the conformal class
of T. Moreover, τ1 and τ2 determine the same conformal
class if and only if they are conjugate under SL(2, Z).

The simplest elliptic functions are those defining a degree
two map of T to the Riemann sphere. We will be con-
cerned with four such functions, that we call JD, JE, JF,
and WP. The first three are closely related to the classical
Jacobi elliptic functions, but have normalizations that are
better adapted to certain geometric purposes, and simi-
larly WP is a version of the Weierstrass ℘-function, with
a geometric normalization. Any of these four functions
can be considered as the projection of a branched cover-
ing over the Riemann sphere with total space T , and as
such it has four branch values, i.e., points of the Riemann
sphere where the ramification index is two. For JD there
is a complex number D such that these four branch values
are {D,−D, 1/D,−1/D}. Similarly for JE and JF there
are complex numbers E and F so that the branch values
are {E,−E, 1/E,−1/E} and {F,−F, 1/F,−1/F} respec-
tively, while for WP there is a complex number P such that
the branch values are {P,−1/P, 0,∞}. The cross-ratio, λ,
of these branch values (in proper order) determines τ and
likewise is determined by τ .

The branch values E, F, and P of JE, JF, and WP can be
easily computed from the branch value D of JD (and hence



from dd) using the following formulas:

E = (D − 1)/(D + 1), F = −i(D − i)/(D + i),

P = i(D2 + 1)/(D2 − 1),

and we will use D as our preferred parameter for describing
the conformal class of T . In 3D-XplorMath, D is related
to the parameter dd (of the Set Parameter... dialog) by
D = exp(dd), i.e., if dd = a+ ib, then D = exp(a) exp(ib).
This is convenient, since if D lies on the unit circle (i.e., if
dd is imaginary) then the torus is rectilinear, while if D has
equal real and imaginary parts (i.e., if b = π/4) then the
torus is rhombic. (The square torus being both rectilinear
and rhombic, corresponds to dd = i · π/4).

To specify an elliptic function in 3D-XplorMath, choose
one of JD, JE, JF, or WP from the Conformal Map menu,
and specify dd in the Set Parameter... dialog. (Choosing
Elliptic Function from the Conformal map menu will give
the default choices of JD on square torus.)

When elliptic functions where first constructed by Jacobi
and by Weierstrass these authors assumed that the lattice
of the torus was given. On the other hand, in Algebraic
Geometry, tori appeared as elliptic curves. In this repre-
sentation the branch values of functions on the torus are
given with the equation, while an integration of a holo-
morphic form (unique up to a multiplicative constant) is
required to find the lattice. Therefore the relation between
the period quotient τ (or rather its SL(2, Z)-orbit) and the



cross ratio lambda of the four branch values has been well-
studied. More recently, in Minimal Surface Theory, it was
also more convenient to assume that the branch values of
a degree two elliptic function were given and that the pe-
riods had to be computed. Moreover, symmetries became
more important than in the earlier studies.

Note that the four branch points of a degree two ellip-
tic function (also called ”two-division points”, or Zwei-
teilungspunkte) form a half-period lattice. There are three
involutions of the torus which permute these branch points;
each of these involutions has again four fixed-points and
these are all midpoints between the four branch points.
Since each of the involutions permutes the branch points, it
transforms the elliptic function by a Moebius transforma-
tion. In Minimal Surface Theory, period conditions could
be solved without computations if those Moebius trans-
formations were not arbitrary, but rather were isometric
rotations of the Riemann sphere—see in the Surface Cat-
egory the minimal surfaces by Riemann and those named
Jd and Je. This suggested the following construction: As
degree two MAPS from a torus (T = C/L) to a sphere, we
have the natural quotient maps T/−id; these maps have
four branch points, since the 180 degree rotations have
four fixed points. To get well defined FUNCTIONS we
have to choose three points and send them to {0, 1,∞}.
We choose these points from the midpoints between the
branch points, and the different choices lead to different
functions. The symmetries also determine the points that



are sent to {−1,+i,−i}. In this way we get the most sym-
metric elliptic functions, and they are denoted JD, JE, JF.
The program allows one to compare them with Jacobi’s
elliptic functions. The function WP = JE ·JF has a dou-
ble zero, a double pole and the values {+i,−i} on certain
midpoints (diagonal ones in the case of rectangular tori).
Up to an additive and a multiplicative constant it agrees
with the Weierstrass ℘-function, but in our normalization
it is the Gauss map of Riemann’s minimal surface on each
rectangular torus.

We compute the J-functions as follows. If one branch
value is called +B, then the others are {−B,+1/B,−1/B}.
Therefore the function satisfies the differential equations

(J ′)2 = (J ′(0))2(J4 + 1− (B2 + 1/B2)J2) = F (J),

J ′′ = (J ′(0))2(2J3 − (B2 + 1/B2)J = F ′(J)/2).

Numerically we solve this with a fourth order scheme that

has the analytic continuation of the square root J ′ =
√
J ′2

built into it:
Let J(0), J ′(0) be given. Compute J ′′(0) := F ′(J(0))/2
and, for small z,

Jm := J(0) + J ′(0) · z/2 + J ′′(0) · z2/8, J ′′m := F ′(Jm)/2,

J(z) := J(0) + J ′(0) · z + (J ′′(0) + 2 · J ′′m) · z2/6.

Finally let J ′(z) be that square root of F (J(z)) that is
closer to J ′(0) + J ′′m · z (analytic continuation!). Repeat.

H.K. Conformal TOC



Fractal Curves And Dynamical Systems
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5.) Hilbert Cube Filling Curve

Dynamical Systems
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About The Dragon Curve *

see also: Koch Snowflake, Hilbert SquareFillCurve
To speed up demos, press DELETE

The Dragon is constructed as a limit of polygonal approx-
imations Dn. These are emphasized in the 3DXM default
demo and can be described as follows:
1) D1 is just a horizontal line segment.
2) Dn+1 is obtained from Dn as follows:

a) Translate Dn, moving its end point to the origin.

b) Multiply the translated copy by
√

1/2.

c) Rotate the result of b) by −45◦ degrees and call the
result Cn.

d) Rotate Cn by −90◦ degrees and join this rotated copy
to the end of Cn to get Dn+1.

The fact that the limit points of a sequence of longer
and longer polygons can form a two-dimensional set is not
surprising. What makes the Dragon spectacular is that it
is a continuous curve whose image has positive area—
properties that it shares with Hilbert’s square filling curve.

There is a second construction of the Dragon that makes
it easier to view the limit as a continuous curve and is also
similar to the constructions of the following curves. Select
in the Action Menu: Show With Previous Iteration.

* This file is from the 3D-XplorMath project. Please see:
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This demo shows a local construction of the Dragon: We
obtain the next iteration Dn+1 if we modify each segment
of Dn by replacing it by an isocele 90◦ triangle, alternat-
ingly one to the left of the segment, and the next to the
right of the next segment. This description has two advan-
tages:
(i) Every vertex of Dn is already a point on the limit curve.
Therefore one gets a dense set of points, c(j/2n), on the
limit curve c.
(ii) One can modify the construction by decreasing the
height of the modifying triangles from aa = 0.5 to aa = 0.
The polygonal curves are, for aa < 0.5, polygons without
self-intersections. This makes it easier to imagine the limit
as a curve. In fact, the Default Morph shows a deformation
from a segment through continuous curves to the Dragon—
more precisely, it shows the results of the (ee = 11)th it-
erations towards those continuous limit curves.

The Dragon is a fractal tile for the plane., see several ver-
sions at http://en.wikipedia.org/wiki/Dragon−curve.
For two beautiful possibilities select from the Action Menu
Tile Plane With Dragon Pairs, or: Tile Plane With

Dragon Quartetts.

Finally, one can choose in the Action Menu to map any
selected Fractal curve by either the complex map z → z2

or by the complex exponential. The program waits for a
mouse click and then chooses the mouse point as origin.

R.S.P., H.K. Fractal TOC



About the Koch Snowflake (or Island) *

The Koch Snowflake Curve (aka the Koch Island) is a frac-
tal planar curve of infinite length and dimension approx-
imately 1.262. It is defined as the limit of a sequence of
polygonal curves defined recursively as follows:

1) The first polygon is an equilateral triangle.

2) The (n+1)-st polygon is created from the n-th polygon
by applying the following rule to each edge: construct
an equilateral triangle with base the middle third of
the edge and pointing towards the outside of the poly-
gon, then remove the base of this new triangle.

Note that at each step the number of segments increases
by a factor 4 with the new segments being one third the
length of the old ones. Since all end points of segments
are already points on the limit curve we see that no part
of the limit curve has finite length.
Actually this is true for a 1-parameter family of similar
constructions: Vary the parameter aa (Set Parameters

in the Settings Menu) in the interval [0.25, 0.5] and watch
how the iterations evolve or choose Morph in the Animation
Menu and observe the deformation of the limit curves.

Hausdorff Dimension: Consider the union of those disks
which have a segment of one polygonal approximation as
a diameter, then this union covers all the further approx-
imations. From one step to the next the diameter of the

* This file is from the 3D-XplorMath project. Please see:
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disks shrinks to one third while the number of disks is mul-
tiplied by 4—so that the area of these covering disk unions
converges to zero. The fractal Hausdorff d-measure is de-
fined as the infimum (as the diameter goes to zero) of the
quantity (diameter)d× (number-of-disks), and the fractal
Hausdorff dimension is the infimum of those d for which the
d-measure is 0. This shows that the Hausdorff dimension
of the Koch curve is less than or equal to log(4)/ log(3),
and since the union of the disks of every second segment
does not cover the limit curve one can conclude that the
Hausdorff dimension is precisely log(4)/ log(3).

The artist Escher has made rather complicated fundamen-
tal domains for tilings of the plane by modifying the bound-
ary between neighboring tiles. This idea can be used to il-
lustrate the flexibility of fractal constructions: Select from
the Action Menu of the Koch Snowflake Choose Escher

Version and observe:
The new polygonal curves remain boundaries of tiles of the
plane under the iteration steps that make them more and
more complicated.

Finally, one can choose in the Action Menu to map any
selected Fractal curve by either the complex map z → z2

or by the complex exponential. The program waits for a
mouse click and then chooses the mouse point as origin.
Note that one gets the graph of a continuous function if
one plots the x-coordinate of a continuous curve against
the curve parameter. This can be viewed with the last
Action Menu entry. – H.K. Fractal TOC



About Hilbert’s Square Filling Curve *

See also: Koch Snowflake, Dragon Curve
Speed up demos by pressing DELETE

In 1890—the year the German Mathematical Society was
founded, David Hilbert published a construction of a con-
tinuous curve whose image completely fills a square. At
the time, this was a contribution to the understanding of
continuity, a notion that had become important for Analy-
sis in the second half of the 19th century. Today, Hilbert’s
curve has become well-known for a very different reason—
every computer science student learns about it because the
algorithm has proved useful in image compression. In this
application one has to enumerate a first square, its four
half size subsquares, their sixteen quarter-size subsquares
and so on, in such a way that squares whose numbers are
close are also close to each other geometrically. In other
words, the continuity of this space filling curve is now im-
portant, in contrast to the fact that the curve was consid-
ered a pathological example of continuity for many years
after Hilbert’s discovery.

It was known in 1890 that such a curve, i.e., a continuous
map c of [0, 1] onto [0, 1]× [0, 1], could not be one-to-one,
i.e., Certain pairs of points t1, t2 of the interval [0, 1] must
have the same image c(t1) = c(t2) ∈ [0, 1] × [0, 1]. This
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led Hilbert to give a special twist to his construction: He
gave a sequence of polygon approximations of the strange
limit curve that, surprisingly, were all one-to-one! In retro-
spect it seems almost as if Hilbert foresaw what would be
needed a century later in image compression; when people
say that they are using Hilbert’s square-filling curve, they
mean more precisely that they are using Hilbert’s approx-
imations to that curve!

The basis of Hilbert’s construction is a single step that is
repeated over and over again. We first explain a simpli-
fied version, although this does not exactly give Hilbert’s
one-to-one approximations that made the construction so
famous. Assume that we already have a curve inside the
square and joining the left bottom corner to the right bot-
tom corner. 3DXM offers four different initial such curves,
leading to quite different pictures. The basic construction
step is to scale the square and its curve by 1

2 and put four
copies of this smaller square side by side in the original
square, in such a way that these four smaller copies of
the curve fit together to form a new curve from the left
bottom corner to the right bottom corner of the original
square. But instead of reading more words, we suggest
that you view the default approximations of the Hilbert
curve in 3DXM. We use a rainbow coloration to emphasize
the continuous parametrization, and we repeat the colors
four times to emphasize that four copies of the previous
approximation make up the new one.
The two end points of the curve (to which this basic iter-



ation step is applied) play a special role, on the one hand
they lead at each iteration step to more points that are al-
ready points on the limit curve, on the other hand exactly
these easy points lead to double points on the approxi-
mations! Hilbert therefore removed small portions of the
curve near its two end points before he applied the above
iteration step. One can see how these Hilbert approxi-
mations manage to stay one-to-one and how they wander
through all the little squares of the current subdivision of
the original square—and these are just the properties used
in image compression.
In 3DXM one can choose with the parameter cc between
several initial curves. An even number and the follow-
ing odd number choose the same curve, but for even cc the
Hilbert iteration is done without the endpoints and for odd
cc including the endpoints. In the Action Menu one can
switch between Hilbert’s approximation (cc=0) and one
that emphasizes the iteration of the endpoints (cc=5).

Finally we add to the above descriptive part some more
technical explanations, namely how to understand the limit
as a continuous curve. Select the Action Menu entry “Em-
phasize Limit Points”. The first shown step (for our de-
fault value cc = 5) is a curve that is mostly a straight
segment, but has also two little wiggles, that emphasize
the initial point c(0) and the end point c(1). The second
step is a curve with four straight segments that join five
wiggles, the points c(j/4), j := 0, . . . , 4. These points are
really points on the limit curve because they remain fixed



under all further applications of Hilbert’s basic construc-
tion step. In the third step we get 17 wiggles, the points
c(j/16), j := 0, . . . , 16 of the limit curve, and so on. The
3DXM demo shows six such iterations. One can deduce
from this the continuity of the limit curve if one proves for
these approximations:

|t2 − t1| ≤
1

4n
⇒ |c(t2)− c(t1)| ≤ 1

2n
.

Early iterations for bb = 0.4 (left), for bb = 0.5 (right, the
Hilbert case).

H.K. Fractal TOC



The Sierpinski Triangle, The Sierpinski Curve *

The Sierpinski Triangle is a well known example of a “large”
compact set without interior points. It is defined by the
following construction:
Start with an equilateral triangle and subdivide it into
four congruent equilateral triangles. Remove the middle
one. Subdivide the remaining triangles again and remove
in each the middle one. Repeat this procedure. Each step
reduces the area by a factor 3/4. – But more is true:

Sierpinski’s Triangle is the image of a continuous curve.

As in the other fractal curves in 3DXM we have to define
an iteratively defined and uniformly convergent sequence
of polygonal curves. As in the case of the Hilbert square
filling curve there is an easier construction by non-injective
curves which, however, can be modified to give better look-
ing injective approximations. In the following illustration
we have chosen the 3DXM parameter bb = 0.49, because
for bb < 0.5 the easier construction also gives injective ap-
proximations. (bb = 0.5 gives Sierpinski’s curve.)

* This file is from the 3D-XplorMath project. Please see:
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The starting polygonal curve has the vertices and the edge
midpoints of an equilateral triangle as its vertices. The ini-
tial point is the midpoint of the bottom edge. The curve
that joins every second vertex of the starting curve is the
triangle in the middle. We view the starting curve as pass-
ing through two edges of each of the three outer triangles.
We only have to describe for one of these triangles how the
next iteration is obtained. We will obtain curves that al-
ways run through two edges of each triangle, and the basic
iteration can always be applied. If we join every second
vertex of the resulting curves then we obtain the injective
approximations of the Sierpinski Curve.
The basic iteration step, for one triangle:
First add the two midpoints of the traversed edges of the
triangle. Two more points are added, one over the first
and one over the last of the four subsegments. The points
lie in the inside of the traversed triangle and they are the
tips of isocele triangles whose base is the first, resp. the
last, of the four subsegments. In the case of the Sierpin-
ski Curve these isocele triangles are in fact equilateral. If
the parameter bb is smaller than 0.5 then the height of
the isocele triangle is by the factor bb/0.5 smaller than the
height of the equilateral triangle – thus avoiding the cre-
ation of double points of the approximation.
The iterated polygonal curve joins the initial point of the
first edge to the first tip, continues to the first edge-midpoint,
passes through the vertex of the original triangle to the



second edge-midpoint, continues through the second tip
and ends at the final point of the last segment. The iter-
ated polygonal curve traverses three triangles, two edges
in each. Therefore the iteration step can be repeated.
The default Morph from the Animation Menu of 3DXM
varies bb from 1/3 to 1/2 thus joining the first triangle
contour by a family of continuous (and injective) curves to
the Sierpinski Curve.
Finally, one can choose in the Action Menu to map any
selected Fractal curve by either the complex map z → z2

or by the complex exponential. The program waits for a
mouse click and then chooses the mouse point as origin.

H.K. Fractal TOC



About Hilbert’s Cube Filling Curve *

See also: The more famous Hilbert SquareFillCurve.

Hilbert’s cube filling curve is a continuous curve whose im-
age fills a cube. It is a straight forward generalization of
the continuous square filling curve. It is shown in anaglyph
stereo via a sequence of polygonal approximations. Each
approximation is a polygon that joins two neighboring ver-
tices of the cube.
The iteration step goes as follows:
The cube with the given (initial or a later) approxima-
tion is scaled with the factor 1/2. Eight of these smaller
copies are put together so that they again make up the
original cube, and this is done in such a way that the end-
point of the curve in the first cube and the initial point of
the curve in the second cube fit together, and so on with
all eight cubes. The result of one iteration therefore is a
curve that is four times as long as the previous curve and
that runs more densely through the cube. In 3DXM, if
one rotates the cube with the mouse then the cube and its
first subdividing eight cubes are shown together with one
iteration of the initial curve.

To achieve a better feeling for the iteration step, one can
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set the parameter cc to integer values between 0 and 5.
This will select different initial curves. An even value of
cc and the following odd value give the same initial curve,
but for even cc the Hilbert iteration is done without the
endpoints, while for odd cc the endpoints are included in
the iteration. (Using the Action Menu, one can switch be-
tween Hilbert’s default (cc=0) and a case that emphasizes
the iteration of the endpoints, cc=5.)
We have the same situation as in the two-dimensional case:
The endpoints and their iterates are points that already lie
on the limit curve because they are not changed under fur-
ther iterations. One can say that the endpoints and their
iterates are related to the limit curve in a very simple way.
On the other hand, the approximating polygons develop
double points at these iterates and the result is that the
approximations look much more confusing if the endpoints
and their iterates are included in the iteration. This is why
we offer the choice between iterating with and without the
endpoints.

H.K. Fractal TOC



The Quadratic Henon Map and its Attractor *

The Henon Map visualization gives the orbit under itera-
tion of the map (x, y)→ (y + 1− aa x2, bb x).

The default values are aa = 1.4 and bb = 0.3. The initial
point is (x, y) = (cc, dd), defaults cc = 1.0, dd = 1.0. The
number of iterations plotted is ee, but the first ff iterates
are omitted. The defaults are ee = 3000 and ff = 20. The
map has two fixed points, they are obtained by solving a
quadratic equation and they are marked by small circles.
Also from a quadratic equation one obtains an orbit of
period 2, marked by small spades. Numerically we found
no indication of an orbit of period 3. We found one orbit
of period 4 numerically and marked it by small squares.
— The derivative of the Henon map has determinant −bb,
i.e. the Henon map reduces area with a uniform rate. One
can view the eigen directions of the derivative via an Ac-
tion Menu entry. — The inverse of the Henon map is the
quadratic map (X,Y )→ ( 1

bbY,X − 1 + aa
bb2Y

2).

In 3DXM, to move the finished image, drag the image with
the mouse. To zoom in our out, drag vertically with the
Shift key pressed. (If you zoom in, you might want to
increase parameter ee using Settings > Set Parameters.)
To zoom into a particular region, hold down Command and
then drag a rectangle in the window, then the program will
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zoom into that region of the Henon attractor, allowing you
to see it in greater detail.

Are there more periodic points on the Henon attractor?
An Action Menu entry allows to search for orbits of period
ii. Since numerical inaccuracies, e.g. of the period 2 orbit,
build up after about 60 iterations to visibly leave the orbit,
we restricted to: ii < 80. Each numerically found orbit is
iterated until the user stops the iteration. If this stop is
by mouse button, the orbit is saved and the last orbit of
these is added to the visually indicated periodic points.

The Henon map depends strongly on the parameters. For
example, we can obtain an attracting orbit of period 6 with
aa = 1.45. To see it, change aa, stop the iteration and click
in the Action Menu: Do 500 Iterations.
(Morphing aa and bb works, but there is no default morph,
so first select Set Morphing... from the Settings menu to
set up the morph—be sure to click the Init To Current
Values button, then change aa0 aa1, bb0 and bb1.)

Finally, we added to the Action Menu: Use Hit Count

Coloration. This changes the representation by adding
vertical bars over the points of the Henon attractor. The
length of these bars shows how often that - pixelsized -
point of the attractor is visited during the iteration. The
graphic therefore illustrates the iteration-invariant mea-
sure on the attractor. For a 1-dimensional such hit count
see the Feigenbaum Tree.

H.K. Fractal TOC



About The Feigenbaum Tree *

See also: Julia Set of z → (z2 − c)
The Feigenbaum Tree is one of the earliest examples of
parameter dependent behavior of a dynamical system. The
dynamical system in question is called the Logistic Map:

fµ(y) := 4µ · y(1− y), y ∈ [0, 1], µ ∈ [1/4, 1].

Since both the parameter space, [1/4, 1], and the dynami-
cal space, [0, 1], are 1-dimensional, one can illustrate in a
(µ, y)-plane how the dynamical behavior changes as the pa-
rameter µ varies. The usual experiment (and the one used
in 3DXM) goes as follows: Starting with a set of initial
values {yk; yk ∈ [0, 1], k = 1, . . . ,K} (and with as many
parameter values µ as one wants to handle) one computes
many iterations f◦nµ (yk), n = 1, . . . , N with N large.

If one plots only the iterations with say n ≥ 1000, then one
observes in the (µ, y)-plane the Feigenbaum Tree: for small
µ the iterated points f◦nµ (yk) converge to a stable fixed
point of the map fµ, yf = fµ(yf ), yf := 1−1/4µ. Observe
that the derivative f ′ at the fixed point is 2− 4µ ≤ 0. At
µ = 3/4 the derivative at the fixed point is −1, so that
the fixed point stops being attractive. It turns out that
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for larger µ the orbit of period 2 is attractive for a while
– until µ reaches another bifurcation point after which an
orbit of period 4 becomes attractive.

This period doubling “cascade” continues up to a certain
µ-value, past which there is for a while no longer an attrac-
tive orbit. All this is clearly visible in the 3DXM demo.
One should use the Action Menu entry: Iterate Mouse

Point Forward to watch how arbitrary initial points are
iterated and how these iterations converge to the attract-
ing orbits of period 2d in the left, period doubling, part of
the Feigenbaum Tree. —Speed-Up Note: If one presses
DELETE either during the default iterations or during the
iteration of a point chosen by mouse, then all delays are
skipped and the result of the iteration is reached quickly.

After the period doubling in the left part has been ob-
served one wants to look at the right part of the Feigen-
baum Tree more closely. The µ-interval which the illus-
tration uses is the interval [bb, cc]. It can be changed in
the Parameter entry of the Settings Menu. Since the at-
tractive orbit of period 2 appears after µ = 0.75, one loses
only the simple attractors if one increases bb from 0.25 to
0.75, and one gains that the remaining part of the Tree
is stretched by a factor of 3. In the same way one can
magnify any part of the parameter space. Of course the
dynamical space is always fully shown—unless one decides
to use SHIFT+MOUSE to scale the image to see part of
the dynamical space magnified. In this case translation
using CONTROL+MOUSE-DRAG may be useful.



The most obvious feature in the right part of the Feigen-
baum Tree are gaps, three fairly large ones and any number
of thinner ones. The three large ones belong to parameter
intervals where the map fµ has attractive orbits of period
6, period 5, resp. period 3. If one magnifies a gap enough,
one can experimentally check that the gaps belong to at-
tractive orbits (use in the Action Menu Iterate Mouse

Point Forward). One also observes that at the right end
of these intervals the periods double again, and again. In
other words, the Feigenbaum Tree illuminates, almost at
the first glimpse, many properties of this 1-parameter fam-
ily of iterated maps.

The Action Menu has been expanded by four entries It-

eration Invariant Density (either with mouse choice of
aa = µ or previous aa) and Density Function (again with
mouse choice of aa or previous value). Before one chooses
any of these one should look at Iterate Mouse Point

Forward, where one sees how the iterated point, given by
the vertical coordinate y, jumps around with fixed µ. The
Iteration Invariant Density expands this: 1000 dif-
ferent y-values are chosen and represented in the left-most
column on the screen. These points are iterated and shown
in the second column, iterated again and shown in the third
column, and so on, 400 times. Except for the first few
columns one clearly sees a density pattern develop: all the
vertical columns look essentially alike. This can be studied
further with the entry Density Function: Here we count
how often each pixel-sized interval of the dynamical (=ver-



tical) interval is visited during the iterations and we plot
the counting result (normalized to fit on the screen). We
observe a function that describes the probability density
with which each pixel interval is visited. – These demos
explain why the curves that represent attractors do extend
into the chaotic regions.

Finally we remark that the Feigenbaum Tree is related to
the real part of the Mandelbrot set because the Mandelbrot
set also parametrizes quadratic maps z → fc(z) := (z2−c)
according to their dynamical properties. If c is chosen
from the big bottom apple then fc has an attractive fixed
point. As one passes on the real axis from the apple to
the disk above it, the fixed point changes from attractive
through indifferent to unstable and the orbit of period 2
becomes attractive. As one moves (always along the real
axis) towards the top of the Mandelbrot set one continues
to meet exactly the same kind of dynamical behavior as
one sees in the Feigenbaum Tree. For more details see the
documentation for Julia Set of z → (z2 − c).
H.K. Fractal TOC



User Defined Feigenbaum Iteration *

Please see first: About The Feigenbaum Tree

The question “How can one find periodic attractors of, say,
a family of Newton Iterations?” led to the development
of this exhibit. The user can input an iteration function
that depends on one parameter aa (which is, as in the
Feigenbaum case, represented horizontally). The dyna-
mical space consists of some interval of arguments y of
the function. We can view them as starting values of the
iteration. The default iteration in 3DXM is the Newton it-
eration for the zeros of the polynomial y → (y2−3)2 +3aa.

The Feigenbaum picture is ideally suited to watch how
the aa-family of iterations behaves: One quickly spots at-
tractive fixed points or attractive orbits with small period;
but one also observes the density curves in a seemingly
chaotic region. If one expands the scale, i.e. stretches a
very small aa-interval over the whole screen, then one sees
easily whether there are in this interval periodic attractors,
or whether still only chaos is visible (then choose a different
aa-interval or expand the current interval further).

The remaining details are the same as for the classical
Feigenbaum Tree and are explained in detail in the docu-
mentation for that exhibit.
H.K.
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The Area Preserving Henon Twist Map *

User Defined Example

The User Defined entry is designed to study the behaviour
of 2-dimensional maps under forward iteration near an iso-
lated, neutral fixed point. (We want a fixed point inside
the window since otherwise most of the iterated points will
move out of sight.) Our example is Henon’s quadratic, area
preserving twist map F :

F (x, y) :=

(
cos(aa) · x− sin(aa) · (y − ebb · x|x|)
sin(aa) · x+ cos(aa) · (y − ebb · x|x|)

)
.

Henon used x2 instead of x|x| for the perturbation term.
See below.

The main parameter aa controls the derivative of F at the
fixed point (0, 0); dF |(0,0) is the rotation matrix with angle
aa. The behaviour of the iterations changes strongly with
aa. Try also −aa. F is area preserving since the Jacobian
determinant det(dF ) = 1 everywhere.

By default ebb = 1. This parameter serves to choose the
size of the neighborhood of the fixed point, because of the
scaling property

F (~x; ebb) = e−bb · F (ebb · ~x; 1).
We use exp(bb) instead of bb, because the scaling parameter
is a multiplicative rather than an additive parameter.
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The iteration is applied to the segment [0, 1] · (cc, dd). The
number of points on this segment is tResolution. The de-
fault number of iterations is ee = 2000. The next 2000
iterations are obtained from the Action Menu Entry: Con-
tinue Curve Iteration.
Since the graphic rendering is much slower than the the
computation of iterations one can increase the parameter
hh from its default value hh = 1 and then only one out
of hh iterations is shown on the screen. This is useful if
one needs to see the result of a large number of iterations.
(For example hh = 4 · n in the case aa = π/2.)

The Action Menu Entry Iterate Mouse Point Forward

allows to iterate a single point. During the selection the
point coordinates appear on the screen. If DELETE is
pressed during the iteration then the waiting time at each
step is cancelled so that the point races through its orbit.

The Action Menu Entry Choose Iteration Segment By

Mouse allows to Mouse-select initial and final point of a
segment on which ff points will be distributed and iterated
(by default ff = 16). The parameter hh speeds up the
iteration as above. After the first ee iterations an Action
Menu Entry is activated and allows to iterate further.

As ususal one can translate the image by dragging or one
can scale it by depressing SHIFT and dragging vertically.

One can also morph the images. They change rather drasti-



cally with aa. As default morph bb is decreased so that the
neighborhood of the fixed point gets expanded. One ob-
serves that most of the iterated points travel on invariant
curves around the fixed point. Occasional periodic points
clearly show up in the image. If aa is an irrational multiple
of π then the visible periods do increase as the neighbor-
hood of the fixed point expands with decreasing bb. (For
the default morph the number ee of iterations is restricted
to 500 to reduce waiting times.)

The Henon twist map can be written as a rotation plus a
quadratic perturbation:

F (x, y) :=

(
cos(aa)− sin(aa)

sin(aa) + cos(aa)

)
·
(
x

y

)
+ perturb,

perturb := ebb · x|x| ·
(

+ sin(aa)

− cos(aa)

)
.

The scalar product between the perturbation and the tan-
gent to the rotation circles is the

Forward Perturbation =

−ebb|x|3 · (sin2(aa) + cos2(aa)).

This explains why we changed the Henon map. Our neg-
ative forward perturbation means that the images under
F stay behind the rotation image, and more so the larger
|x|. This is the usual behavior of a monotone twist map.
Henon’s perturbation has the factor x3 instead of |x|3, so



that the twist in the left half plane partially cancels the
twist in the right half plane. In our definition do the el-
liptical islands around periodic points appear more easily,
while with Henon’s definition the behaviour near the fixed
point, in the case when aa is a rational multiple of π (e.g.
aa = π/2), is much more complicated.

We recommend that users try out also Henon’s definition
and definitions of their own.

H.K. Fractal TOC



The Mandelbrot Set And Its Julia Sets *

If one wants to study iterations of functions or mappings,
f◦n = f ◦ . . . ◦ f , as n becomes arbitrarily large then Julia
sets are an important tool. They show up as the bound-
aries of those sets of points p whose iteration sequences
f◦n(p) converge to a selected fixed point pf = f(pf ). One
of the best studied cases is the study of iterations in the
complex plane given by the family of quadratic maps

z → fc(z) := z2 − c.

The Mandelbrot set will be defined as a set of parameter
values c. It provides us with some classification of the
different ‘dynamical’ behaviour of the functions fc in the
following sense: If one chooses a c-value from some specific
part of the Mandelbrot set then one can predict rather well
how the iteration sequences zn+1 := fc(zn) behave.

1) Infinity is always an attractor. Or, more pre-
cisely, for each parameter value c we can define a Radius
Rc ≥ 1 such that for |z| > Rc the iteration sequences
f◦n(z) converge to infinity. Proof: The triangle inequality
shows that |fc(z)| ≥ |z|2 − |c| and then |fc(z)| > |z| is cer-
tainly true if |z2| − |c| > |z|. Therefore it is sufficient to
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define Rc := 1/2 +
√

1/4 + |c|, which is the positive solu-
tion of R2 −R− |c| = 0.
This implies: if we start the iteration with z1 > Rc then
the absolute values |zn| increase monotonically—and in-
deed faster and faster to infinity. Moreover, any starting
value z1 whose iteration sequence converges to infinity will
end up after finitely many iterations in this neighborhood
of infinity, U∞ := {z ∈ C | |z| > Rc}. The set of all points
whose iteration sequence converges to infinity is therefore
an open set, called the attractor basin A∞(c) of infinity.

2) Definition of the Julia set Jc. On the other hand,
the attractor basin of infinity is never all of C, since fc
has fixed points zf = 1/2 ±

√
1/4 + c (and also points of

period n, that satisfy a polynomial equation of degree 2n,
namely f◦n(z) = z).

Definition. The nonempty, compact boundary of the at-
tractor basin of infinity is called the Julia set of fc,

Jc := ∂A∞(c).

Example. If c = 0 then the exterior of the unit circle is the
attractor basin of infinity, its boundary, the unit circle, is
the Julia set J0. The open unit disk is the attractor basin
of the fixed point 0 of fc. The other fixed point 1 lies on
the Julia set; 1 is an expanding fixed point since f ′c(1) = 2;
its iterated preimages −1,±i, . . . all lie on the Julia set.

Qualitatively this picture persists for parameter values c
near 0 because the smaller fixed point remains attractive.



However, the Julia set immediately stops being a smooth
curve—it becomes a continuous curve that oscillates so
wildly that no segment of it has finite length. Its im-
age is one of those sets called a fractal for which a frac-
tional dimension between 1 and 2 can be defined. Our
rainbow coloration is intended to show Jc as a continu-
ously parametrized curve. We next take a more carefull
look at attractive fixed points.

3) c-values for which one fixed point of fc is attrac-
tive.

There is a simple criterion for this: if the derivative at
the fixed point satisfies |f ′c(zf )| = |2zf | < 1 then zf is
a linearly attractive fixed point; if |2zf | > 1 then zf is
an expanding fixed point; if the derivative has absolute
value 1 then no general statement is true (but interesting
phenomena occur for special values of the derivative).

Since the sum of the two fixed points is 1, the derivative
f ′c can have absolute value < 1 at most at one of them.
Let wc be that square root of 1 + 4c having a positive
real part. Then |1 − wc| is the smaller of the absolute
values (of the derivatives of fc at the fixed points). The
set of parameter values c with a (linearly) attractive fixed
point of fc is therefore the set {c | |1 − wc| < 1}, or
{c = (w2 − 1)/4 | |1 − w| < 1}. In other words, the
numbers 1 + 4c are the squares of numbers w that lie in
a disk of radius one with 0 on its boundary. The apple
shaped boundary is therefore the square of a circle through
0. It is called a cardioid.



4) The definition of the Mandelbrot set in the pa-
rameter plane.

The behavior of the iteration sequence zn+1 := fc(zn) in
the z-plane depends strongly on the value of the parameter
c. It turns out that for those c satisfying |c| > Rc, the
set of points z whose iteration sequences do not converge
to infinity has area = 0. Such points are too rare to be
found by trial and error, but one can still compute many
as iterated preimages of an unstable fixed point. It follows
from |c| > Rc that only the points of the Julia set Jc do not
converge to infinity. Moreover, the Julia set is no longer a
curve, but is a totally disconnected set: no two points of
the Julia set can be joined by a curve inside the Julia set.
(In this case our coloration of Jc has no significance.)

The Mandelbrot set is defined by the opposite behaviour
of the Julia sets:

Mandelbrot Set : M := {c | Jc is a connected set}
There is an 80 year old theorem by Julia or Fatou that
says:

M = {c ; f◦nc (0) stays bounded}
= {c ; |f◦nc (0)| < Rc for all n}.

This provides us with an algorithm for determining the
complement of M; namely c 6∈M if and only if the itera-
tion sequence {f◦nc (0)} reaches an absolute value > Rc for
some positive integer n. (But, the closer c is to M, the
larger this termination number n becomes).



On the other hand, if fc has an attractive fixed point, then
it is also known that {f◦nc (0)} converges towards that fixed
point. The interior of the cardioid described above is there-
fore part of the Mandelbrot set, and in fact it is a large
part of it.
As experiments we suggest to choose c-values from the
apple-shaped belly of the Mandelbrot set and observe how
the Julia sets deform as c varies from 0 to the cardioid
boundary. For an actual animation, choose the deforma-
tion interval with the mouse (Action Menu) and then select
‘Morph’ in the Animation Menu. To see how the deriva-
tive at the fixed point controls the iteration near the fixed
point, choose ‘Iterate Forward’ (Action Menu) and watch
how chosen points converge to the fixed point. This is very
different for c from different parts of the Mandelbrot belly.

5) Attractive periodic orbits. As introduction let us
determine the orbits of period 2, i.e., the fixed points of
fc ◦ fc that are not also fixed points of fc. Observe that:

fc ◦ fc(z)− z = z4 − 2cz2 − z + c2 − c
= (z2 − z − c)(z2 + z − c+ 1).

The roots of the first quadratic factor are the fixed points
of fc, the roots of the other quadratic factor are a pair of
points that are not fixed points of fc, but are fixed points
of fc ◦ fc, which means, they are an orbit of period 2,
clearly the only one. Such an orbit is (linearly) attractive
if the product of the derivatives at the points of the orbit
has absolute value < 1. The constant coefficient in the



quadratic equation is the product of its roots, i.e. the
product of the points of period 2 is 1− c. Therefore:

The set of c-values for which the orbit of period 2 is at-
tractive is the disk {c ; |1− c| < 1/4}.
Again, this disk is part of the Mandelbrot set since {f◦nc (0)}
has the two points of period 2 as its only limit points.
The interior of the Mandelbrot set has only two compo-
nents that are explicitly computable. These are the c-
values giving attractive fixed points or attractive orbits of
period 2. For example, the points of period 3 are the zeros
of a polynomial of degree 6, namely:(

fc ◦ fc ◦ fc(z)− z
)
/(z2 − z − c)

= z6 + z5 + (1− 3c)z4 + (1− 2c)z3+

+ (1− 3c+ 3c2)z2 + (c− 1)2z + 1− c(c− 1)2.

But since this polynomial cannot be factored (with c a pa-
rameter) into two polynomials of degree 3 it does not pro-
vide us with a description of the attractive orbits of period
3. However, it does give those c-values for which the period
3 orbits are superattractive (i.e. (f◦3)′(orbit point) = 0),
since in this case the constant term must vanish. Approx-
imate solutions of 1 − c(c − 1)2 = 0 are c = 1.7549, c =
0.12256± 0.74486i. One can navigate the Mandelbrot set
and observe that the complex solutions are between the
two biggest blobs that touch the primary apple from ei-
ther side.



Linearly attractive orbits always have c-values which be-
long to open subsets of the Mandelbrot set (in particu-
lar all the blobs touching the two explicit components),
but the closure of these open subsets does not exhaust the
Mandelbrot set. For example for c = i the orbit of 0 is
0 7→ −i 7→ −1 − i 7→ i 7→ −1 − i . . ., i.e., after two pre-
liminary steps it reaches an orbit of period 2. Since this
orbit stays clearly bounded we have i ∈ M (by the cri-
terium quoted before). On the other hand, if the iteration
z 7→ z2 − i had any attractor (besides ∞), then the orbit
of 0 would have to converge to the attracting orbit. There-
fore there is no attractor and no attractor basin. In fact,
the complement of the Julia set is the (simply connected)
attractor basin of∞. Because of its appearance, this Julia
set is called a dendrite.
To generalize this observation, consider, for any c, the
orbit of 0: 0 7→ −c 7→ c2 − c 7→ c4 − 2c3 + c2 − c 7→
(c4 − 2c3 + c2 − c)2 − c 7→ . . .. If 0 is on a periodic orbit
for some c, then this orbit is superattractive. If the peri-
odicity starts later then this periodic orbit may not be an
attractor even though the orbit of 0 reaches it in finitely
many steps. For example c2 − c is periodic of period 3, if
c3 · (c − 2) · (c3 − 2c2 + c − 1)2 · (c6 − 2c5 + 2c4 − 2c3 +
c2 + 1) = 0; c = 2 is the largest point on the Mandel-
brot set, the third factor has as roots the three c-values
(mentioned before) for which the iteration has superat-
tractive orbits of period 3. The last factor has the root
c = 1.239225555 + 0.4126021816 · i, its Julia set is another



dendrite. A third dendrite is obtained, for example, if the
4th point c4− 2c3 + c2− c in the orbit of 0 is a fixed point,
which is the case if c4(c− 2)(c3 − 2c2 + 2c2 − 2) = 0; here
the last factor has the numerical solutions c = 1.543689
and c = 0.2281555± 1.1151425 · i.
6) Suggestions for experiments. The final entry in
the Action Menu for the Julia set fractal is a hierachi-
cal menu with five submenus, each of which lists a num-
ber of related c-values that you may select. The c-values
in these menus were selected because they typify either
some special topological property of the associated Julia
set or some dynamical property of the iteration dynamics
of z 7→ z2 − c, and these properties are referenced by spe-
cial abbreviations added to the menu item. (In addition
some menu items also list a “name” that is in common use
to refer to the Julia set, usually deriving from its shape).
For convenience we will list in the next couple of pages all
the items from these five menus, but first we explain the
abbreviations used to describe them.

Abbreviations used in the following lists of interesting C-
values. ‘FP’ means ‘fixed point’, the corresponding c-
values are from the belly of the Mandelbrot set. ‘cyc k’
means ‘cyclic of period k’, the corresponding c-values are
from the blobs directly attached to the belly; its Julia sets
have a fixed point which is a common boundary point of k
components of the attractor basin and the attractive orbit
wanders cyclicly through these k components. ‘per 2 · 3’
means: this c-value has an attractor of period 6 and the



c-value is from a blob which is attached to the disk in M
(which gives the attractive orbits of period 2). By contrast,
‘per 3 · 2’ means that the c-value is from the biggest blob
which is attached to a period-3 blob (attached to the belly);
its attractor has also period 6, but the open sets through
which the attractive orbit travels are arranged quite differ-
ently in the two cases. One should compare both of them
with the cyclic attractors of period 2 resp. 3. The abbrevi-
ation ‘tch 1-2’ means that the c-value is in the Mandelbrot
set a common boundary point between the belly (i.e. the
component of attractive fixed points) and the component
of attractors of period 2. For the ‘Siegel disks’ see Nr. 8
of this ATO first; the column entry in the list gives the
rotation number of the derivative (of the iteration map)
at the fixed point. In the dendrite section of the list we
mean by ‘ev per 2’ that the orbit of 0 is ‘eventually periodic
with period 2’, as explained in Nr5 of this ATO. Finally, if
c 6∈M then the Julia set is a totally disconnected Cantor
set and there are no such easy distinctions between differ-
ent kinds of behaviour of the iteration on the Julia set (all
other points are iterated to ∞).



Interesting C-values From the Action Submenus

Attractors Menu
C - values Popular Name Behaviour

0.0 + 0.0 · i Circle FP

0.0 + 0.1 · i Rough Circle FP

0.127 + 0.6435 · i Near-Rabbit FP

-0.353 - 0.1025 · i Near-Dragon FP

0.7455 + 0.0 · i Near San Marco FP

1.0 + 0.0 · i cyc 2

1.0 + 0.2 · i cyc 2

0.1227 + 0.7545 · i Rabbit cyc 3

1.756 + 0.0 · i Airplane cyc 3

-0.2818 + 0.5341 · i cyc 4

1.3136 + 0.0 · i per 2·2
-0.3795 + 0.3386 · i cyc 5

0.5045 + 0.5659 · i cyc 5

-0.3909 + 0.2159 · i cyc 6

0.1136 + 0.8636 · i per 3·2
1.1409 + 0.2409 · i Rabbit’s Shadow per 2·3
-0.3773 + 0.1455 · i cyc 7

-0.1205 + 0.6114 · i cyc 7

-0.36 - 0.1 · i Dragon cyc 8

0.3614 + 0.6182 · i cyc 8

-0.3273 + 0.5659 · i per 4·2
1.0 + 0.2659 · i per 2·4

1.3795 + 0.0 · i per 2·2·2
0.0318 + 0.7932 · i Rabbit Triplets per 3·3
-0.0500 + 0.6318 · i cyc 10

-0.4068 + 0.3409 · i per 5·2
0.5341 + 0.6023 · i per 5·2
0.9205 + 0.2477 · i per 2·5
1.2114 + 0.1545 · i per 2·5
0.6977 + 0.2818 · i cyc 11

0.4864 + 0.6023 · i Quintuple Rabbits per 5·3
0.65842566307252 - 0.44980525145595 · i Super Attractor per 21



Interesting C-values From the Action Submenus.

C - values Popular Name Behaviour

Between Attractors Menu:
0.75 + 0.0 · i San Marco tch 1-2

1.25 + 0.0 · i S.Marco’s Shadow tch 2-2·2
0.125 + 0.64952 · i Balloon Rabbit tch 1-3

-0.35676 + 0.32858 · i tch 1-5

Siegel Disks Menu:
0.390540870218 + 0.586787907347 · i 2π · i· gold

-0.08142637539 + 0.61027336571 · i 2π · i/
√

2
0.66973645476 - 0.316746426417 · i 2π · i/

√
5

One Simply Connected Open Component Menu:
0.0 + 1.0 · i Dendrite ev per 2

0.2281554936539 + 1.1151425080399 · i Dendrite FP after 3

1.2392255553895 - 0.4126021816020 · i Dendrite ev per 3

-0.4245127190500 - 0.2075302281667 · i FP after 7

1.1623415998840 + 0.2923689338965 · i per 2 after 7

Outside Mandelbrot set Menu:
0.765 + 0.12 · i Cantor set

-0.4 - 0.25 · i Cantor set

-0.4253 - 0.2078 · i Cantor set



An experiment which one should always make after one has
computed a Julia set for some c from the Mandelbrot set:
Remember from which part of M c came and then ‘Iterate
Forward’ (Action Menu) mouse selected points until they
visually converge to a periodic attractor. Observe how
the shape of the Julia set lets one guess the period of its
attractor and how this relates to the position of c in M.

7) Computation of the Julia set. In addition to the
attractor at infinity there is at most one further attractor in
the z → (z2 − c) systems. All preimages of non-attractive
fixed points or non-attractive periodic orbits are points
on the Julia set. Since |f ′c| > 1 along the Julia set (with
some exceptions), the preimage computation is numerically
stable. This is a common method for computing Julia
sets.
In our program we compute preimages starting from the
circle {z; |z| = Rc} around the wanted Julia set. Under
inverse images these curves converge from outside to the
Julia set. Such an approximation by curves allows us to
color the Julia set in a continuous way and thus emphasize
that, despite its wild looks it is the image of a continuous
curve—at least for c ∈ M , otherwise we recall that the
Julia set is totally disconnected, so in particular is not the
image of a curve. Our computation works also for c 6∈M,
since our ‘curves’ of course consist of only finitely many
points, and the inverse images of each of these points have
their limit points on the Julia set.



8) Self-similarity of a Julia set. A well advertised prop-
erty of these Julia sets is their so called ‘self-similarity’.
By this one means: Take a small piece of the Julia set
and enlarge it; the result looks very much like a larger
piece of that same Julia set. For the Julia sets of the
present quadratic iterations, this self-similarity is easily
understood from the definitions: The iteration map fc is a
conformal map that stretches its Julia set 1:2 onto itsself.
In other words, the iteration map itself maps any small
piece of its Julia set to roughly twice as large a piece, and
it does so in an angle preserving way. From this point of
view self-similarity should come as no surprise.

9) Siegel Disks. We next would like to explain an ex-
perimentally observable phenomenon that mathematicians
find truly surprising, but this needs a little preparation.
Simplifying Mappings. Imagine that we want to describe
something on the surface of the earth, for example a walk.
For a long time, people have been more comfortable giv-
ing the description on a map of the earth rather than on
the earth itself. Mathematicians view a map of the earth
more precisely as a mapping F from the earth to a piece
of paper and they describe (or even prove) properties of
the map by properties of the mapping F . An example of
a useful property is ‘conformality’: angles between curves
on the earth are the same as the angles between the cor-
responding curves on the map.
Conjugation by simplifying mappings. Let us consider one
of the above iteration maps fc and assume that it has an at-



tractive fixed point zf with derivative q := f ′c(zf ), |q| < 1.
The simplest map with the same derivative is the linear
map L(z) := q · z. It is the definition of derivative that
the behaviour of fc near the fixed point looks ‘almost’
like the behaviour of L near its fixed point 0, and ‘al-
most’ means: the smaller the neighborhoods of the fixed
points (on which the maps are compared) the more the
maps look alike. But more is true for fc because of the
assumption |q| < 1, we have the theorem: There exists
on a fixed(!) neighborhood of the fixed point zf a simpli-
fying map F to a neighborhood of 0 ∈ C that makes fc
look exactly like its linear approximation L, by which we
mean: fc = F−1 ◦ L ◦ F . In particular, this tells us every-
thing about the iterations of fc in terms of the iterations
of L because they also look the same when compared using
(‘conjugation’ by) F : f◦nc = F−1 ◦ L◦n ◦ F .
Siegel’s Theorem. The previous result cannot be true in
general if |q| = 1. For example if q = exp(2πi/k), then
L◦k = id, but f◦kc =/ id. Therefore they cannot look alike
under a simplifying (i.e., ‘conjugating’) mapping F . But if
z → q · z is an irrational rotation and if some further con-
dition is satisfied, for example if q := exp(2πi/

√
2), then

there is again such a simplifying mapping F such that fc
looks near that fixed point exactly like its linearization,
namely: fc = F−1 ◦ L ◦ F .
Experiment. While Siegel’s proof insures only very small
neighborhoods on which the simplifying mapping F exists,
these neighborhoods are surprisingly large in the present



case. One can ‘observe’ Siegel’s theorem by first choos-
ing c = ((1 − q)2 − 1)/4 such that f ′c(zf ) = q with q =
exp(2πi ·k/√p), p prime (or square free), then one chooses
points on a fairly straight radial curve from the fixed point
almost out to the Julia set. Under repeated iterations these
points travel on closed curves around the fixed point (’cir-
cles’ when viewed with F ) and all of them travel with the
same angular velocity, i.e., one observes that they remain
on non-intersecting radial curves.

H.K. Fractal TOC
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Ordinary Differential Equations *

3D-Filmstrip knows how to calculate and display solutions
of the initial value problem for first and second order sys-
tems of ordinary differential equations (ODE) in one, two,
or three dependent variables.

Let us recall briefly what this means. We will be dealing
with vector-valued functions x of a single real variable t
called the “time”. Here x can take values in R, R2, or
R3. The problem is to find x from a knowledge of how x′

depends on x and t (in the first order case) or a knowledge
of how x′′ depends on x, x′, and t (in the second order
case). Thus in the first order case the ODE we are trying
to solve has the form x′ = f(x, t) and in the second order
case it is x′′ = f(x, x′, t).

In the first order case, the so-called Local Existence Theo-
rem for First Order ODEs tells us that, provided the func-
tion f is continuously differentiable, given an “initial time”
t0, and an “initial position” x0, then in some sufficiently
small interval around t0, there will be a unique solution
x(t) to the ODE with x(t0) = x0.

There is a similar local existence theorem for second order
ODEs (which in fact is an easy consequence of the first
order theorem). It says that given an initial time t0, an

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/ ODEs

http://3D-XplorMath.org/


initial position x0, and an initial velocity v0 then, in some
sufficiently small interval around t0, there will be a unique
solution x(t) of the ODE with x(t0) = x0 and x′(t0) = v0.

Theory provides not only an abstract existence theorem,
but also many explicit numerical algorithms for finding ap-
proximating solutions, in terms of the function f and the
initial data. One of the all-time favorites for general pur-
poses is the so-called Fourth Order Runge-Kutta Method,
and this is the one that 3D-Filmstrip uses.

Although the overall approach to solving such ODEs is
quite similar for first and second order ODEs and for the
various dimensions, the details for giving initial conditions
and for displaying solutions are different for each case, and
for that reason instead of having a single ODE category,
it turns out to be convenient to have six. The naming
of these categories is fairly self-evident. For example, the
ODE(1D) 1stOrder Category deals with the case that x
take values in R, and the equation is first order, while the
ODE(3D) 2ndOrder Category deals with the case that x
take values in R3, and the equation is second order.

For the ODE(1D) 2ndOrder category, the usual reduction
to a first order system in two variables (x, u), where u
represents x′, is made via (x, u)′ = (u, f(x, u, t)).

In the case of the ODE(2D) 1stOrder category, the orbit is
drawn dotted, with a constant time interval between dots.
This gives a valuable visual clue concerning the velocity at
which the orbit is traced out, but if you wish to turn this



feature off, just set Dot Spacing to zero using the ODE
Settings... dialog (see below).

In all the ODE categories, when you have chosen either a
particular pre-programmed example (or set up your own,
using the User Defined. . . feature) then as with the other
categories you will first see a visualization of a default solu-
tion. This display will usually stop quickly on its own, but
you can also click the mouse button (or type Command
period) to stop it. You may then choose the item “ODE
Settings. . .” in the Settings menu and this will allow you
to set the various data the program needs to compute and
display an orbit, namely:

a) the initial time,

b) the time-span,

c) the step-size (used in the Runge-Kutta method),

d) the initial value of x, and (in a second order case)

e) the initial value of x′.

Choosing Create from the Action Menu will then display
the solution for these newly selected settings.

There is an ODE control panel that opens by default just
below the main display window. This has buttons to do
more easily things you can also do with the menus (Create,
Erase, Continue, double or half the scale, and bring up
the dialog to set initial conditions, step-size, time-span,
and dottedness). In addition there are buttons for single-
stepping the ODE forward or backward, and there is a



read-out of the current time, position, and velocity. This
control panel can be hidden using the Hide ODE Controls
command of the Action menu (and then may be re-opened
with the Show ODE Controls command).

The main display shows the evolution of an orbit in the
phase space. By default, the program also shows projec-
tions of the orbit on the coordinate axes (using different
colors to distinguish the projections). This display occurs
in a second pane of the graphics window that opens au-
tomatically below the main pane. This pane can be hid-
den by choosing ”Hide Direction Fields” from the Action
menu. There is a rectangular button at the right edge of
the screen where the two panes meet. If you press on this
button, the button itself will disappear and be replaced by
a horizontal line. Drag the horizontal line to where you
would like the new boundary between panes and release
the mouse. (At least twenty percent of the total screen
height must be devoted to each pane.)

For first order ODE in one and two dimensions, the pro-
gram by default displays the direction field defined by the
current ODE. (Since second order ODEs in one variable
are reduced to first order ODEs in two variables, the di-
rection field is also shown in this case.) The direction field
of a time dependent ODE is updated every few integra-
tion steps. (As far as I know, 3D-Filmstrip is the only
publicly available program that shows direction fields for
time-dependent ODE.) For the ODE(3D) 2ndOrder cate-
gory there is also a direction field shown (when the display



is in stereo) for the special case of a charged particle in a
magnetic field—but be careful, the field shown is the mag-
netic field, not the direction of the Lorentz force acting on
the particle.

It is fairly easy to do a rough “phase space analysis” by
keeping the other data fixed and varying the initial values.
To make this easier, in certain categories it is possible to
choose the initial conditions using the mouse. For example,
in the ODE(1D) 1stOrder category, each time you click the
mouse in the window, the forward and backward orbits are
drawn through that initial value. Similarly, clicking the
mouse in the ODE(1D) 2ndOrder category and ODE(2D)
1st Order category also creates an orbit with the mouse
point as initial condition. Surprisingly, something similar
even works for the ODE(2D) 2ndOrder category. Here to
choose an initial condition AND velocity, either select IC
By Mouse [Drag] from the Action menu or type Control
I. You may then click and drag the mouse to choose the
initial position (click) and velocity (drag).

Numerical Methods for 1st Order ODEs

Numerical solutions are computed at a discrete set of time
points t0, t1, . . . , tn and usually one such time step of a
method is described, i.e. how to get from x(t0) to x(t1).
One then has to repeat this step as long as one wants to.
The simplest of all methods is the Euler method: From
the initial data t0, x0 = x(t0) one computes first the
initial derivative: x′(t0) := f(x0, t0), then the



Euler step: x(t1) := x0 + x′(t0) · (t1 − t0).
The following picture shows five such (large) Euler steps
and the corresponding exact solutions for the same time
interval. Clearly, if the exact solution curves happen to
be convex, the Euler Step solutions stay outside and move
farther away from the exact solution with each step.

Five Euler Steps

Recall that the tangent of a parabola wich is parallel to
some secant touches the parabola in the middle of the se-
cant interval. This suggests a substantial improvement
over the Euler method, it is called the Halfstep Method:
Stepsize: ∆t := t1 − t0
Initial Derivative: x′0 := f(x0, t0)
Half Step towards Middle: xm := x0 + x′0 ·∆t/2
Middle Derivative: x′m := f(xm, t0 + ∆t/2)
Final Step: x(t1) := x0 + x′m ·∆t.
Again we illustrate this method with a picture, but us-
ing a larger stepsize than in the Euler case. The magenta
vector is the derivative at the approximate midpoint xm
multiplied by the stepsize, i.e. x′m ·∆t. This vector is the
difference between x(t1) and x(t0). One can see that this
method follows the solution curve rather well, but traverses



it too fast.

Three Halfstep Steps

Some first order ODEs have the property that the second
initial derivative can be computed rather easily, more eas-
ily than differentiation of the ODE, x′′ = ∂

∂xf · x
′ + ∂

∂tf ,
suggests. In those cases one can use a second order Taylor
step instead of the first order step used in Euler’s method.
We call this the Taylor-2 Method:

Initial 1st and 2nd Derivative: x′0, x
′′
0

Taylor Step: x(t1) := x0 + x′0 ·∆t+ x′′0 · (∆t)2/2.
The endpoints of the magenta segments lie on the quadratic
parabola p(s) := x0 + x′0 · s + x′′0 · s2/2, s ∈ [0,∆t] (with
the same initial tangent (green) as the exact solution). The
method has the same order of precision as the previous one,
so that one will often prefer the Halfstep method. But
in the vicinity of a point where f(x, t) = 0, the Taylor-2
method is usually better.



Three Taylor-2 Steps

Next we try to explain the famous Runge-Kutta Method.

First we need to understand what numerical analysts call
an order k method. If we compute one Euler step from x0,
but with various stepsizes s, then all the computed points
lie on the tangent x0 + x′0 · s. The difference to the exact
solution is controlled by a bound B2 on the second deriva-
tive of solutions near x0 as: error(s) ≤ B2 · s2. This is
called a first order method.
For the Taylor-2 method these stepsize dependent numeri-
cal values lie on a parabola which was already mentioned:
p(s) := x0 + x′0 · s+ x′′0 · s2/2. The difference to the exact
solution x(s) is controlled in terms of a bound B3 for third
derivatives as: error(s) ≤ B3 · s3. This is called a second
order method.
How can one make such considerations work for the Half-
step method? Clearly the approximate midpoint is a func-
tion of the stepsize: xm(s) = x0 +x′0 ·s/2 and therefore the
final point also: xf (s) := x0 + f

(
xm(s), t0 + s/2

)
· s. We

may call this curve the method-curve. Computation shows



that the exact solution at t0 and the method-curve at s = 0
have the same first and second derivative: x′0(t0) = x′f (0),

x′′0(t0) = x′′f (0). The error, therefore, is again ≤ B3 · s3,
and the method is also called a second order method.
What we saw in these examples is true in general: Con-
sider the initial data x0, t0 as fixed. The numerical value of
the computation of one step will then only depend on the
stepsize s, giving us the method-curve xf (s) for the consid-
ered numerical solution. If the first k initial derivatives of
the exact solution agree with the first k initial derivatives
of the method-curve, then we speak of an order k method.

The Runge-Kutta Method can be seen as a generaliza-
tion of the halfstep method: Instead of computing two
derivatives x′0, x

′
m, Runge-Kutta computes four and aver-

ages them for the final step.
initial derivative: x′0 := f(x0, t0)
1st intermediate point: xa(s) := x0 + x′0 · s/2
1st intermediate derivative: x′a(s) := f(xa(s), t0 +s/2)
2nd intermediate point: xb(s) := x0 + x′a · s/2
2nd intermediate derivative: x′b(s) := f(xb(s), t0 +s/2)
3rd intermediate point: xc(s) := x0 + x′b · s
3rd intermediate derivative: x′c(s) := f(xc(s), t0 + s)
derivative average: x′RK(s) := (x′0 + 2x′a + 2x′b + x′c)/6
final step: xf (s) := x0 + x′RK(s) · s.
We can compute the first four derivatives of this method-
curve and check that the above defines a 4th order method.
It is one of the most celebrated ODE solving numerical
methods. A visualisation of one Runge-Kutta step is:



The three straight segments from the initial point end at
the three intermediate points xa, xb, xc. Note how far they
are apart from each other compared to the small error of
the composite step. (The dotted green curve is the exact
solution, the black dots lie on the method-curve.)

In 3D-XplorMath ODEs are not only objects of visualisa-
tions, they are an essential tool for many computations in
the program. The ODE for elliptic functions f , namely:

f ′(z)2 = P (f(z)), P a polynomial of degree 3 or 4

is an example where the second derivative can be more
easily computed than the first: f ′′(z) = P ′(f(z))/2. We
therefore use a different 4th order method:
Initial Derivatives: x′0, x

′′
0

Intermediate Point: xm(s) := x0 + x′0 · s/2 + x′′0 · s2/8
Intermediate 2nd Derivative: x′′m(s) := P ′(xm(s))/2



Final Step: xf (s) := x0 + x′0 · s+ (x′′0 + 2x′′m(s)) · s2/6
Although zeros of the polynomial P are constant solutions
of the first order ODE, the just described method can start
to compute the non-constant function f at points z where
f ′(z) = 0 as initial value. A Runge-Kutta solution would
stay constant.
R.S.P., H.K. ODEs



1D-, 2D- ODE examples in 3D-XplorMath *

See First: About This Category (DocumentationMenu)

1D 1st Order:
logistic: ẋ = aa · x(1− x/bb)
mass action: ẋ = aa · x+ bb · x2

1D 2nd Order:
harmonic Osc: ẍ = −aa2 x− bb u
forced Osc: ẍ = −aa2 x− bb u+ cc cos(dd(t− ee))
forced Duffing: ẍ = −hhx− ii x3 − aa u+ bb cos(cc t)
van der Pol: ẍ = hhx− aa(x2 − 1)u+ bb cos(cc t)
Pendulum: ẍ = −aa sin(x)− bb u
2D 1st Order:
harmonic Osc:

(
x
y

)̇
=
(

0 1
−aa −bb

)
·
(
x
y

)
Pendulum:

(
x
y

)̇
=
(

y
−aa sin(x)−bb y

)
linear 2D:

(
x
y

)̇
=
(
aa bb
cc dd

)
·
(
x
y

)
VolterraLotka:

(
x
y

)̇
=
(

(aa−bb y)·x
(cc x−dd)·y

)
2D 2nd Order: (ẋ = u, ẏ = v)

coupled Osc:
(
x
y

)̈
=
(−aa2x+dd(y−x)−gg u
−bb2y+dd(x−y)−hh v

)
forced Osc:

(
x
y

)̈
=
(−aa2x+bb cos(cc t)
−dd2y+ee cos(ee t)

)
Foucault Pend:

(
x
y

)̈
=
(−aa2x+2 bb sin(π cc/180)v
−aa2y−2 bb sin(π cc/180)u

)
bb := earth’ angular velocity, cc := pendulum latitude

* This file is from the 3D-XplorMath project. Please see:
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3D-ODE examples in 3D-XplorMath *

See First: About This Category (DocumentationMenu)

3D 1st Order:

linear:

x
y
z

′ =

 aa bb cc
dd ee ff
gg hh ii

 ·
x
y
z


Lorenz:

x
y
z

′ =

 −10x+ 10y
aa x− y − xz
−(8/3)z + xy


Rikitake:

x
y
z

′ =

 −bb x+ yz
−aa x− bb y + xz

1− xy


Rössler:

x
y
z

′ =

 −y − z
x+ aa y

bb− cc z + xz



* This file is from the 3D-XplorMath project. Please see:
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3D 2nd Order: (x′ = u, y′ = v, z′ = w)

coupled Oscillator:x
y
z

′′ =

−aa2x+ dd(y − x) + ee(z − x)− gg u
−bb2y + dd(x− y) + ff(z − y)− hh v
−cc2z + ee(x− z) + ff(y − z)− ii w


forced Oscillator:x
y
z

′′ =

 −aa2x+ bb cos(cc · t)
−dd2y + ee cos(ff · t)
−gg2z + hh cos(ii · t)


The ODE for a charged particle in a magnetic field M :
~x ′ = ~u, ~x ′′ = ~u ′ = ~u×M(x, u), charge and mass are 1.

const Magnetic Field: M(~x) := (aa, bb, cc)t

Magnetic Field of straight wire:
~wire := (aa, bb, cc)t/

√
aa2 + bb2 + cc2

~px := ~x− 〈~x, ~wire〉 · ~wire, rr := | ~px|2
M(~x) := dd/rr · ( ~wire× ~px)

Toroidal Magnetic Field:
M(~x) := (2y, −2x, 0)/(x2 + y2)

Magnetic Dipole Field:
rr := x2 + y2 + z2

eDOTp := aa x+ bb y + cc z

M(~x) := (
3x

rr − aa
,

3y

rr − bb
,

3z

rr − cc
)
eDOTp

rr3/2



ODEs with Central Forces*

This category models the motion of a particle moving ac-
cording to Newton’s Law “F = ma”, where the force F
is a “central” force, i.e., one directed towards (or away
from) the origin and whose magnitude depends only on
the distance of the point from the origin. (As we will re-
call below, this also models the motion of two particles in
space when the force between them is directed along the
line joining them and has a magnitude that depends only
on their separation.)

By “conservation of angular momentum”, the particle moves
in a fixed plane, and this is taken as the plane of the screen,
with the origin at the screen center. By default, the x and
y axes are visible but, as usual, you can reverse this using
the View Menu.

There are several pre-programmed central forces:

Coulomb: F (r) = −aa/r2 (default: aa = 2.5)

Power Law: F (r) = −aa rbb (defaults: aa = 2.5,
bb = −2.01)

Yukawa: F (r) = −aa exp(−bb r)(bb/r + 1/r2)
(defaults: aa = 2.5, bb = 0.25)

Hooke’s Law : F (r) = −aa r (default: aa = 2.5)

Higgs: F (r) = aa r(1− (r/cc)) (aa = 3.0, cc = 2).

* This file is from the 3D-XplorMath project. Please see:
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(And there is also a provision for a “User Defined” central
force law.)

After choosing one of the pre-programmed examples, an
orbit will be displayed for a default initial position (xini-
tial,yinitial) and initial velocity (xdotinitial,ydotinitial).
The time evolution of the orbit will continue until the
mouse is clicked. The same initial position (0.5, 0.5) and
same initial velocity (−1.25, 2.0) is used for the Coulomb’s
law, the Power Law, and Yukawa Law. (This, in particu-
lar, demonstrates the fact that having all bounded orbits
closed is rather special to the case of a power law with
exponent −2.)

To display an orbit with different initial conditions, choose
“IC by mouse (Drag)” from the Central Force menu and
then click to choose an initial value, and drag to choose an
initial velocity—the velocity vector will be proportional
to the vector difference of the MouseUp and MouseDown
points. (If instead you choose “IC by mouse (Throw)”
from the menu, then the initial point is again the Mouse-
Down point, but the velocity is computed using the posi-
tion of the mouse one-half second after MouseDown rather
than the MouseUp position. (In either case, the new or-
bit will start being displayed immediately, and continue
to evolve until the mouse is again clicked). There is still
a third way to choose initial conditions; namely, choose
“ODE Settings. . . ” from the Settings menu. This will dis-
play a Dialog in which you can choose the initial values
of x and y. In addition x- and y- components of velocity.



(In this Dialog, you can also set the value of the mass,
the step-size used in the Runge-Kutta integration, and the
“dotted-ness” of the orbit. You can also change the val-
ues of any parameters on which the chosen central force
depends by choosing Set Parameters. . . from the Settings
menu. (To check dependence of the current central force on
the parameters aa, . . . , ii, choose either “About this Ob-
ject” from the Central Force menu.) After making changes
to the parameters, the mass, initial conditions, stepsize,
and dotted-ness of the orbit (see below for more about the
latter two) choose Create from the Central Force menu to
start the display of the new orbit. (If you want the orbit
drawn onto a clean screen, choose Erase before choosing
Create.)

Instead of using one of the pre-programmed central forces,
the user can define a central force law by choosing User
Defined. . . in the Central Force menu and entering a func-
tion of the radius, r, and the usual usual nine param-
eters aa, . . . , ii. (After clicking the OK button, either
choose an initial position and velocity with the mouse as
described above, or use the Set Parameters. . . and ODE
Settings. . . and then choose Create.)

If the Time step-size is set equal to zero in the ODE Set-
tings Dialog, then the stepsize will be set by an adaptive
algorithm that makes the stepsize (roughly) inversely pro-
portional to the magnitude of the velocity. This has the
advantage of making the stepsize very small where the ve-
locity is large, avoiding numerical errors that are otherwise



inherent in such situations. The downside is that all timing
information is lost—the orbit is traced out equal lengths
in equal times rather than by Kepler’s Law of equal areas
in equal times.

The Dot Spacing in the ODE Settings. . .Dialog sets the
time between which successive dots are drawn along the
orbit. If Dot Spacing is set equal to zero, then the orbit is
drawn as a solid curve.

Finally, we recall that the real significance of a central
force is that it models the Newtonian motion of a two-
particle system (say with masses m1 and m2) in which the
force F (r) on each particle is equal and opposite to that
on the other, is along the line joining the two particles
and has a magnitude depending only on their distance of
separation, r. First, by conservation of linear momentum,
the center of mass of the two particles moves with constant
velocity in a straight line, so making a Gallilean coordinate
transformation we can assume the center of mass is fixed at
the origin. The problem then is to find the time evolution
of the vector ~r joining particle one to particle two, and
it is easily seen that ~r satisfies Newton’s equations for a
particle moving in response to the central force F (r) and
with mass the harmonic mean of m1 and m2 (the so-called
“reduced mass”). For details see any good text on classical
mechanics, for example, Chapter 3 of Goldstein.

R.S.P. ODEs



Forced Duffing Oscillator *

What is it?

What we shall call the Forced Duffing Oscillator Equation
is the second order ODE for a single variable x,

d2x
dt2 = −hhx− ii x3 − aa dxdt + bb cos(cc t) (1)

whose solutions we display via the equivalent (non-auto-
nomous) first order system in two variables, x and y:

dx
dt = y, dy

dt = −hhx− ii x3 − aa y + bb cos(cc t) (2)
which in turn can be made into an autonomous first order
system in three variables, T , x and y:

dT

dt
= 1,

dx

dt
= y,

dy

dt
= −hhx− ii x3 − aa y + bb cos(cc T ). (3)

We discuss the interpretation and significance of the five
parameters, aa, bb, cc, hh, ii below. Their default values
are: aa = 0.25, bb = 0.3, cc = 1.0, hh = −1.0, and ii = 1.0.
If bb·cc =/ 0 then the forcing period 2π/cc is shown by yellow
dots on the orbit.

Why is it interesting?

Here are two of the considerations that make the oscil-
lator equation (1) worth studying. First, with appropri-
ate choices of parameter values it reduces to a variety of
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mathematically and physically interesting oscillator mod-
els; some classical such as the harmonic oscillator (with
and without damping and forcing) and others that are
more exotic, such as the classic Duffing oscillator intro-
duced by Duffing in 1918. By putting these together in a
parametric family, we can investigate how various features
of these systems behave as we move around in the param-
eter space. Secondly—and more importantly—it was in in
the study of the Duffing Oscillator that symptoms of the
phenomena we now call “chaos” and “strange attractor”
were first glimpsed (although their significance was only
appreciated later). By the Poincaré-Bendixson Theorem,
three is the smallest dimension in which an autonomous
system can exhibit chaotic behavior, and the Duffing sys-
tem is so simple that it lends itself very easily to the study
and visualization of the phenomena related to chaos.

The Newtonian Particle Interpretation.

Note that (1) becomes Newton’s equation of motion for a
particle of unit mass moving on the x-axis if we define the
“force”, F (x, dxdt , t), acting on the particle to be the right-
hand side of (1). Let’s interpret the various terms of F
from this point of view.

If hh is positive then the term −hhx by itself gives Hooke’s
Law for a spring, that “stress is proportional to strain”
and the parameter hh has the interpretation of Hooke’s
proportionality factor between the extension of the spring,
x, and the restoring force. If also ii = 0 then we have a



pure Hooke’s Law force that gives the Harmonic Oscillator,
d2x
dt2 = −hhx. But a real spring only satisfies Hooke’s Law
approximately, and the term −ii x3 represents the next
term in the Taylor expansion of the restoring force under
the reasonable assumption that this force is an odd func-
tion of the spring extension, x. (If ii is positive it is called
a “hardening” spring and if negative a “softening” spring.)
For the classic Duffing Oscillator, hh is negative and ii is
positive and there is not a good interpretation of the force
in terms of a spring. Rather, the sum of the two terms
−hhx− ii x3 should be interpreted as the force on a par-
ticle that is moving in a double-well potential as we will
discuss in more detail below.

The term −aa dxdt represents a “friction” force of the sort
that would be experienced by a particle like a bullet trav-
eling through air or a bead sliding on a wire; that is, as-
suming that the “damping” or “friction” coefficient aa is
positive, it describes a force acting on the particle in the
direction opposite to the velocity and with a magnitude
that is proportional to the magnitude of the velocity.

Under the sum of the above terms of the force law F , the
particle will (in general) oscillate back and forth—which of
course is why it is called an oscillator—however if aa > 0
these oscillations will gradually die down as the kinetic en-
ergy is absorbed by friction. The final term in the force
law, bb cos(cc t) is a periodic forcing term that will act on
and perturb the motion of this oscillating particle, and we



note that it is solely a function of the time and is inde-
pendent of both the position and velocity of the particle.
We will discuss a possible physical interpretation of this
term later. The parameter bb is clearly the amplitude of
this forcing term, i.e., its maximum magnitude, and the
parameter cc is the angular velocity of its phase in radians
per unit time, so that the period of the forcing term is 2π

cc
and its frequency is cc

2π . As we shall see, it is the energy
that is fed into the system by this forcing term that is es-
sential for the interesting chaos related effects to occur. In
fact the most interesting behaviors of solutions of (1) are
present when all the above terms are present in F , that
is when the oscillator is both forced and damped, and in
fact the way damping and forcing can balance each other is
crucial to understanding the general behavior of solutions.
However we will begin by analyzing the simpler situation
when both the damping and forcing terms are missing.

The Undamped, Unforced Case.

We now assume that aa and bb are both zero, so the
force F (x) = −hhx − ii x3 is a function of x alone. Now
in one-dimension, whenever this is the case the force is
conservative, that is, it is minus the derivative of a “po-
tential” function, U(x). Indeed, if we define U(x) :=
−
∫ x

0
F (ξ) dξ, then clearly F (x) = −U ′(x). If as above we

write y := dx
dt , define the kinetic energy by K(y) := 1

2y
2

and define the Hamiltonian or total energy function by
H(x, y) := K(y) + U(x), then dH

dt = y dydt + U ′(x)dxdt =



y(dydt + U ′(x)). So, if Newton’s Equation is satisfied, dydt =
d2x
dt2 = F (x) = −U ′(x), so dH

dt = 0. This of course is the
law of conservation of energy: the total energy function
H(x, y) is constant along any solution of Newton’s Equa-
tions. In one-dimension this provides at least in princi-
ple a way to solve Newton’s Equation for any initial con-
ditions x = x0 and y = y0 at time t = t0. Namely,
the path or orbit of the solution is a curve in the x-y
plane, and by conservation of energy this curve is given
by the implicit equation H(x, y) = H(x0, y0). And since(
dx
dt

)2
= y2 = 2K(y) = 2(H(x0, y0)− U(x)), we find:

dt

dx
=

1√
2(H(x0, y0)− U(x))

,

so we can find t as a function of x by a quadrature, and
then invert this relation to find x as a function of t.

In the Harmonic Oscillator case, with hh = 1 and
ii = 0, U(x) = 1

2x
2 so H(x, y) = 1

2 (x2 + y2), so the orbits
are circles, and it is easy to carry out the above quadrature
and inversion explicitly, to obtain x(t) = x0 cos(t − t0) +
y0 sin(t− t0).

The Universal “Sliding Bead on a Wire” Model.

In one-dimension there is a highly intuitive physical model
that makes it easy to visualize the motion of a particle
under a given force. Moreover this model is “universal” in
the sense that it works for all forces that are function of
position only and hence, as we noted above, are of the form



F (x) = −U ′(x) for some potential function U . Namely,
imagine that we string a bead on a frictionless piece of
wire that lies along the graph of the equation y = U(x).
If the bead has mass m = 1 and if we choose units so
that g, the acceleration of gravity, equals one, then the
gravitational potential of the bead is mgh = h where h is
its height. So if as usual we interpret the ordinate of a
point as its height, then the gravitational potential of the
bead when it is at the point (x, y) = (x, U(x)) is just U(x),
and the sliding motion of the bead along the wire under
the attraction of gravity will exactly model whatever other
system we started from!

In the case of the Harmonic Oscillator, where F (x) = −x
and U(x) = 1

2x
2, the graph is the parabola, y = 1

2x
2 and

it is easy to imagine the bead oscillating back and forth
along this parabola.

For the unforced and undamped Duffing Oscillator the
force is F (x) = −hhx− ii x3, where for simplicity in what
follows we will assume that ii > 0 and hh < 0. The poten-
tial is U(x) = hh

2 x
2+ ii

4 x
4, which we note can be considered

as the first two terms in the Taylor expansion for an arbi-
trary symmetric potential with local maximum at 0. It is
easily checked that limx→±∞ U(x) = +∞ and in addition
to the local maximum at 0, there are two other critical

points of U , at x = ±
√
−hh
ii , where U has local minima.

For the default values, hh = −1 and ii = 1, the force is
F (x) = x(1−x2), and the potential is U(x) = 1

4x
2(x2−2),



so the local minima are at ±1. We graph this force F (x)
and potential U(x) below, and show a selection of the re-
sulting orbits. It should be clear why U is called a double-
well potential.

F (x) U(x)

Some orbits of the Unforced, Undamped Duffing Oscillator



The Unforced, Damped Duffing Oscillator.

We now still assume bb = 0 (so there is no forcing) but we
assume that aa > 0, so there is damping. In the bead on
a wire picture, aa dxdt = aa y is the friction from the bead
rubbing against the wire, and the force is now given by
F (x) = −U ′(x)− aa y. If we again calculate dH

dt as we did

above, we now find not dH
dt = 0 but instead dH

dt = −aa y2.
The result is that instead of the orbits of the bead in the
x-y-plane being closed curves of constant total energy H,
the energy decrease along the obits, and they cut across
the H = constant curves and spiral in towards the two
minima of H at the bottom of the two potential wells. We
show a selection of the resulting orbits below.

Some orbits of the Unforced, Damped Duffing Oscillator



The Forced Duffing Oscillator.

We now add back the forcing term bb cos(cc t). First a
word about how to interpret this force in the sliding bead
picture. If we assume that there is an alternating electric
field parallel to the x direction and with strength cos(cc t)
at time t, then bb cos(cc t) will be the electric force felt by
the bead if we give the bead an electric charge of magnitude
bb.

Some orbits of the Forced, Damped Duffing Oscillator



Chaos, Strange Attractors, and Poincaré Sections.

Two Time Slices of the Duffing Attractor
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3-dim ODE of 2nd Order: Charged Particles *

The Motion of Charged Particles
in Magnetic Fields

The path p(t) of a particle with electric charge e and mass
m in a magnetic field B is given by

m · p′′(t) = e · p′(t)×B(p).

(The right hand side is called the Lorentz Force.)

This implies that, for an arbitrary magnetic fields, B, the
kinetic energy E(t) = m

2 〈p
′, p′〉(t) is constant in time.

One should first convince oneself in the case of a
Constant Magnetic Field

that a particle can move tangentially to the field lines, in
circles around the field lines and in helices around the field
lines, i.e., in any linear combination of the first two special
cases.
Put in Settings, ODE Settings:
vx = 0.003, vy = 0.003, vz = 0.5, to obtain almost circles
around the field lines.
And put vx = 0.2, vy = 0.2, vz = 0.001 to obtain approxi-
mate straight lines parallel to the field lines. The Default

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/ ODEs

http://3D-XplorMath.org/


Settings give a general helix. We will also try to understand
charged particle motions in nonlinear fields by looking at
such special cases.

We consider next motion of a charged particle in the:

Field of an Electric Current

along the x-axis. The field lines are circles parallel to the y-
z-plane with centers on the x-axis. In this case, the Default
Settings give initial conditions in the x-y-plane (a sym-
metry plane of the field) that are orthogonal to the field
lines. The solution curves therefore remain in this plane,
and are, for small velocities, almost circles around the field
lines. But, because the absolute value of the field is de-
creasing with r, these solution curves are more strongly
curved the nearer they are to the wire. They are therefore
rolling curves with a translational period in the direction
of the wire. (See Plane Curves, Cycloid and put aa = 1
and bb = 6.5 in the Set Parameters dialog.) If in ODE
Settings one increases the velocity to vy = 0.5, then the
translational part is so large that the consecutive loops do
not intersect.
We obtain solution curves which almost follow the field
lines if we make the initial velocity tangential to the field
lines and fairly small:

vx = 0, vy = 0, vz = 0.02,

Time span = 450, Step-size = 0.2.

Now slowly increase vz, e.g., to vz = 0.2, to obtain an-



other family of solutions follows the field lines, but winding
around them in small loops.
Next in Settings, ODE Settings, put:
vx = 0.02, vy = 0.02, vz = 0.01
leaving Time span = 450, Step-size = 0.2, as before.
Finally we increase the initial velocity to obtain solution
curves that look fairly wild at first but can be seen to fol-
low the pattern which we recognized for more special initial
conditions, namely put
vx = 0.2, vy = 0.2, vz = 0.1
to see solutions that follow helices with wide loops around
them. Try by all means to view this in stereo!

Finally we consider the so-called Störmer Problem, namely
the motion of charged particles in a Magnetic Dipole Field.
Since the magnetic field of our Earth is a dipole field, such
motions occur in the van Allan Belt when charged particles
from the Sun’s plasma meet the Earth. A dipole field B(p)
with a magnetic moment mm is given by:

B(p) = 3〈mm, p〉 p
|p|5
− mm

|p|3
.

The Default ODE Settings give a fairly general but some-
what complicated solution curve. To see solutions that al-
most follow the field lines use ODE Settings to set a small
initial velocity tangential to the field lines, say vx = 0, vy =
0, vz = 0.05. To see solutions that almost circle the field
lines in the equator plane of the dipole, in the ODE Set-
tings dialog, choose small initial conditions in the equator



plane, e.g., vx = 0.1, vy = 0.1, vz = 0. The resulting curves
are close to rolling curves. (Compare Plane Curves, Cir-
cle using, Parameter Settings: hh = −0.125, ii = 4, and
increase t-Resolution to 200, then choose Generalized Cy-
cloids from the Action Menu.) Since the absolute value
of the field increases along the field lines from the equator
towards the poles, one cannot have solutions that almost
follow the field lines while circling them in narrow loops,
however one can approximate such behavior with the ini-
tial condition vx = 0.035, vy = 0.035, vz = 0.05.

In a Plenary address on Dynamical Systems he gave at the
1998 International Congress of Mathematicains in Berlin,
Jürgen Moser had an interesting discussion of the Störmer
Problem that we reproduce below from Documenta Mathe-
matica, Extra Volume, ICM 1998, pp. 381–402. (After the
lecture, one of us approached Moser and showed him the vi-
sualization of the Störmer Problem in 3D-XplorMath. He
appeared to be delighted by it, but said something looked
not quite right to him, a remark that helped us eliminate
a small bug!)

Here is the extract from Moser’s lecture.

R.S.P. & H.K. ODEs

The Störmer Problem.

Another large scale confinement region is known in the
magnetic field of the earth. With the advent in 1957 of
satellites it was soon discovered that the earth was sur-



rounded by (two) belts of charged particles caused by its
magnetic field. Since the beginning of the century it was
known that such charged particles were present above the
atmosphere and were responsible for the aurora borealis
(and australius). It was Störmer (incidentally president of
the ICM 1936 in Oslo) who made calculations of the orbits
of these charged particles moving in the magnetic field of
the earth, which he modelled as a magnetic dipole field.
This is an interesting nonlinear Hamiltonian system.

The satellite measurements led to the discovery of two
regions surrounding the earth, the so-called van Allan belts,
in which charged particles were trapped. It turns out that
it is an example of a magnetic bottle to which the stability
theory is applicable (M. Braun 1970).

It is interesting to realize the dimensions involved:
For electrons, the “cyclotron radius” is of the order of a
few kilometers and the corresponding periods of oscillation
about one millionth of a second! The “bounce period” of
travel from north pole to south pole and back is a fraction
of a second.

In addition to these natural van Allan belts several
artificial radiation belts have been made by the explosion
of high-altitude nuclear bombs since 1958. Some of those
so created belts had a lifetime up to several years—which
shows the long stability of these experiments as well as the
irresponsibility for carrying them out! Some 30 years ago
these tests have been stopped.



Störmer Problem

Van Allen Belt
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Lattice Models *

The Lattice Model category integrates and displays the
equations of motion for a one dimensional lattice of “os-
cillators” with nearest neighbor interactions. This is in-
teresting for itself of course, but in addition it provides an
important general method for making discrete approxima-
tions to many continuous wave equations.

An excellent introduction to lattice models can be found
in Michel Remoissenet’s “Waves Called Solitons: Concepts
and Experiments” (Springer-Verlag, 1994, ISBN 3–540–
57000–4). Indeed, the implementation of the Lattice Model
category in 3D-Filmstrip, and the choice of particular mod-
els was very strongly influenced by Remoissenet’s treat-
ment of the subject. For this reason we will only cover
below what a user of 3D-Filmstrip needs to know to use
the Lattice Model category, and refer to the above text for
the theoretical background.

For various reasons the number N of oscillators in the lat-
tice is restricted to be a power of 2. Currently N can be
any one of16, 32, 64, 128, 256, or 512. (One not so obvious
reason is that choice greatly speeds up the computation
of the amplitudes of the normal modes for the linearized
lattice.) The characteristics that determine the equations
of motion of the lattice are:
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1) The mass of an oscillator,

2) The “internal” force an oscillator exerts on a neigh-
boring oscillator,

3) The external force on an oscillator.

The mass of an oscillator is not set directly, but rather is
derived from a parameter called the density, which has a
default value of 1, but can be set to another value by the
user. The mass satisfies the relation that the number N of
oscillators times the mass of an oscillator is equal to the
length of the lattice times its density.

The force between two neighboring oscillators is always as-
sumed to be a function F (d) of the distance d separating
them. If xi is the displacement of the i-th oscillator from its
equilibrium position, then the total force on the i-th oscil-
lator due to its two neighbors is F (xi−xi−1)−F (xi+1−xi).
The external force on the i-th oscillator is also assumed to
be some function G(xi) of the displacement xi from equi-
librium.

There are four preprogrammed Lattices: Fermi-Pasta-Ulam,
Toda, Discrete Sine-Gordon, and Discrete Klein-Gordon.
The internal forces between oscillators for these four are
as follows:

1) Fermi-Pasta-Ulam: F (d) = −aa d−bb d2−cc d3−dd d4

2) Toda: F (d) = aa(exp(−bb d)− 1)

3) Discrete Sine-Gordon: F (d) = (cc/aa)d

4) Discrete Klein-Gordon: F (d) = (cc/aa)d



and the external forces are:

1) Fermi-Pasta-Ulam: G(d) = 0

2) Toda: G(d) = 0

3) Discrete Sine-Gordon: G(d) = bb2 sin(d)

4) Discrete Klein-Gordon: G(d) = bb2d.

In addition their is a User Defined... item in the Lattice
menu that brings up a dialog that lets the user define in-
ternal and external forces.

The equations of motion can be integrated either with zero
boundary conditions (i.e., x1 = xN = 0) or with periodic
boundary conditions (x1 = xN ).

Various choices including initial conditions can be changed
from their default values using the dialog brought up by
the Set Lattice Parameters... menu item of the Lattice
Model menu.

R.S.P. Lattice TOC



The FERMI-PASTA-ULAM Lattice *

Background

The Fermi-Pasta-Ulam lattice is named after the experi-
ments performed by Enrico Fermi, John Pasta, and Stanis-
law Ulam in 1954-5 on the Los Alamos MANIAC com-
puter, one of the first electronic computers. As reported
in Ulams autobiography [Ul], Fermi immediately suggested
using the new machine for theoretical work, and it was de-
cided to start by studying the vibrations of a string un-
der the influence of nonlinear internal forces. Nonlinear-
ity makes the computations very difficult and the problem
could not be attacked by standard mathematical methods.
However, physical intuition suggested that the motion of
such a string would eventually “thermalize”. The pur-
pose of the experiment was to investigate the rate of ther-
malization. For the computer calculations, the string was
approximated by a finite sequence of point particles with
nearest-neighbor interactions—a so-called “lattice model”.
The motion of such a lattice is governed by a system of or-
dinary differential equations, and it is these equations that
the computer solves, numerically.

The results more than justified the trouble of carefully for-
mulating the experiment and programming it on a very
primitive machine, for they went completely against all
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expectations. In fact the motion did not seem to to ther-
malize at all! The previously accepted beliefs thus had
to be re-examined, and this re-examination led eventually
to the discovery of soliton theory, which became a major
theme of twentieth Century mathematics.

How To View the Demonstration

The Fermi-Pasta-Ulam string is the black curve. Although
it appears continuous, it is in fact made up of the motion of
individual points (the blue curve represents the velocities
of these points). The number of points (i.e., the number of
particles in the lattice) can be changed by choosing Lattice
Parameters in the Action menu, and various other adjust-
ments are possible. Fermi- Pasta-Ulam actually used a
lattice with at most 64 particles.

The energies of the so-called normal modes are the red/green
bars in the left hand corner. Thermalization means, roughly
speaking, that the heights of the red/green bars should
equalize after a sufficiently long period of time. More pre-
cisely, it is the time averages of their heights that should
equalize, and these are represented by the blue bars.

The fact that this does not happen is the surprising feature
of the Fermi-Pasta-Ulam experiment. What happens, and
what Fermi-Pasta-Ulam observed, is first of all that only
the first few normal modes are excited, and in addition
that the motion is almost periodic. This can be detected
by watching the motion of the red/green bars—after some
time they return (apparently) to the original configuration.



Various initial shapes can be chosen from the Lattice Pa-
rameters menu, but the almost periodicity seems to occur
regardless of the initial shape of the string (or the initial
configuration of the red/green bars).

Further Aspects

To put this observation into context, it is necessary to con-
sider the effects of different internal forces in the string. As
explained in the Lattice Models ATC the internal force is
specified by a function T (y). By choosing the User Lattice
Model from the Lattice Models menu, the function T (y)
can be specified (as well as the usual Lattice Parameters).
To switch on the energies of the normal modes, select Show
Normal Mode Display from the Action menu. For exam-
ple, T (y) = ky (where k is a positive number) gives the
motion of a “standard” string, which is exactly periodic.
The red/green bars behave even more simply—they remain
constant. The Fermi-Pasta-Ulam case is T (y) = y + αy2;
the default value of α in 3D-XplorMath is 0.3. (Fermi-
Pasta-Ulam also considered y + αy3 and a piecewise lin-
ear function, with similar results.) The effect of the small
nonlinear term αy2 is to “perturb” the periodic behaviour
of the linear case, and the red/green bars no longer re-
main constant. But, as we have observed, some vestiges of
periodicity remain.

This is surprising because a randomly chosen nonlinear
internal force T (y) generally leads to the thermalization
that Fermi-Pasta-Ulam expected. For physical reasons,



T (y) should be of the form ky + N(y) where N(y) is a
nonlinear term which remains small during the motion,
for example, T (y) = y + 100y3 + 5y4 + 5y5.

Why is the Fermi-Pasta-Ulam lattice so special? This
question took some time to answer, because the necessary
mathematical tools were insufficiently developed at that
time. In addition there were various sources of distraction:
the mathematical string is only an idealized model of a
real physical situation, the discrete lattice is in turn only
a model of that string, and furthermore any computer cal-
culations are subject to numerical and rounding errors. In
fact the philosophical questions surrounding such “simula-
tion” experiments, and the subject of “experimental math-
ematics” in general, are still being debated (see [We]).

However, it is by now generally agreed that the Fermi-
Pasta-Ulam lattice is a genuine phenomenon and that it
can be explained by a combination of powerful theories:
the Kolmogorov-Arnold-Moser (or KAM) theory, the the-
ory of completely integrable Hamiltonian systems, and soli-
ton theory. The KAM theory explains, very roughly speak-
ing, that a system which is close enough to a completely
integrable Hamiltonian system retains some of the pre-
dictable behavior of such a system. The Fermi-Pasta-Ulam
lattice happens to be close to the Toda lattice, which (some
20 years after the FPU experiments) was discovered to be
a completely integrable Hamiltonian system. The Toda
lattice is discussed further in the ATO for the Toda lattice
(select Toda from the Lattice Models menu).



Soliton theory refers to the study of special solutions (soli-
tons) of certain nonlinear wave equations such as the Korteweg-
de Vries (KdV) equation. These solutions have unexpect-
edly persistent behavior (in contrast to randomly chosen
nonlinear waves, which either disperse or break after a suf-
ficiently long time). It turns out that the differential equa-
tions of the FPU lattice can be considered as a discrete
approximation to the KdV equation; hence it is plausible
that the FPU lattice admits soliton-like solutions as well.
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The TODA Lattice *

Background

The Toda lattice is named after Morikazu Toda, who dis-
covered in the 1960s that the differential equations for a
lattice with internal force T (y) = α(eβy − 1) (with α, β
constant) admit solutions which can be written in terms
of elliptic functions. This extends the fact that the stan-
dard lattice with linear internal force T (y) = ky can be
solved using trigonometric functions.

Since nonlinear ODE are usually much more complicated
than linear ODE, the very fact that it admits explicit solu-
tions at all means that the Toda lattice is already a remark-
able example. (The Fermi-Pasta-Ulam lattice, in contrast,
has no analogous explicit solutions.) A few years later, a
possible explanation of this property appeared, when it was
discovered that the Toda lattice is an example of a “com-
pletely integrable Hamiltonian system”. This, in turn, led
to an explanation of the unexpectedly simple behaviour of
the Fermi-Pasta-Ulam lattice (see the ATO for the Fermi-
Pasta-Ulam lattice): on the one hand, for a completely in-
tegrable Hamiltonian system, (almost) periodic behaviour
can be predicted, and on the other hand, the Fermi-Pasta-
Ulam lattice can be regarded as an approximation to the
Toda lattice when the vibrations are small. We shall say
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more about completely integrable Hamiltonian systems be-
low.

How To View the Demonstration

It can be seen that the Toda lattice behaves in a very
similar way to the Fermi-Pasta-Ulam lattice. Instead of
thermalizing, the lattice motion appears to be periodic.

Further Aspects

Mathematically, however, the Toda lattice is much easier
to analyze than the Fermi-Pasta-Ulam lattice, because it is
a completely integrable Hamiltonian system. This means,
practically speaking, that it has the maximum possible
number of conserved quantities. For a system of n ordi-
nary differential equations of second order, this maximum
number is n. For example, for the equation y′′ = −ky2,
the total energy 1

2y
′2 + 1

2ky
2 (kinetic energy plus potential

energy) is a conserved quantity, i.e., it is constant when y
is a solution of the differential equation, and there are no
others. The standard linear lattice is of this type; each of
the normal mode energies is a conserved quantity, because
each represents the total energy of an uncoupled (indepen-
dent) oscillator.

The fact that the Toda lattice has the maximum possible
number of conserved quantities is not obvious, and cer-
tainly not on physical grounds. A mathematical explana-
tion comes from the fact that the equations of motion may
be written in the form L′ = [L,M ], where L and M are



matrix functions. This type of equation is called a Lax
equation (after Peter Lax), and the Lax equation for the
Toda lattice was discovered by Hermann Flaschka in the
1970s. For any Lax equation, the eigenvalues of the ma-
trix function L turn out to be conserved quantities, and
this gives the required number of conserved quantities for
the Toda lattice—though their physical meaning remains
unclear.

The conserved quantities greatly constrain the motion of
the system. In fact, the Arnold-Liouville Theorem says
that the motion of an n-dimensional completely integrable
Hamiltonian system must, if it is bounded (as in our case),
be equivalent to linear motion on an n-dimensional torus.
When n = 1 this means that the motion must be periodic.
When n = 2 (and similarly if n > 2) the motion must
be expressable as (e2πiat, e2πibt) for some real numbers a,
b. If a/b is rational the motion is periodic, otherwise it is
almost-periodic.

Although the Fermi-Pasta-Ulam lattice and the Toda lat-
tice are approximately the same when the vibrations are
small, it can be shown that the Fermi-Pasta-Ulam lattice
is not a completely integrable Hamiltonian system. Nev-
ertheless, the almost periodic motion of the Toda lattice
is inherited by the Fermi-Pasta-Ulam lattice, at least for
small vibrations, and this explains the absence of thermal-
ization in both cases.

Completely integrable Hamiltonian systems are important,
but quite special, and it is an important area of current



research to identify and study more general types of “in-
tegrable systems”.
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The Waves Category *

The subject of wave phenomena is an exceedingly rich and
varied one, playing an important rôle in everyday life, in
the pure and applied sciences, and in many areas of math-
ematics. Water waves can be small ripples generated by
a passing breeze or enormous, destructive tsunamis gen-
erated by earthquakes, which themselves are waves that
travel in the Earth’s crust. Maxwell’s Equations of elec-
tromagnetism are wave equations that describe the behav-
ior of light, and of the signals responsible for radio, TV,
and the World Wide Web. The probability waves of quan-
tum theory govern the behavior of elementary particles at
the smallest spatial scales, and the search for gravitational
waves at the largest scales is a major concern of modern
cosmology.

Our goal in the 3D-XplorMath Wave Category is to show
examples of waves from a fairly limited region of this vast
landscape. Namely, the program displays the evolution in
time of a one-dimensional “wave-form”, by which we mean
a real or complex valued function u(x, T ) of the “time”, T ,
and a single “space” variable x. At a time T , the wave has
a given “shape”, the graph of the function x 7→ u(x, T ),
and the program displays this graph with x as abscissa and
u(x, T ) as ordinate.

[NOTE: The resolution of this graph is tResolution, and its
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domain runs from tMin to tMax. That is to say, the inter-
val [tMin,tMax] is divided in tResolution points xi, i =

1, . . . , tResolution with spacing xStep = (tMax−tMin)
(tResolution−1) ,

and the graph is plotted at the points (xi, yi) where xi =
tMin+(i− 1) xStep and yi = u(xi, T ), and then these plot
points are joined into a polygonal graph. Note that the t
of tMax tMin and tResolution have nothing to do with the
time T ! Thus to make the graph smoother, you must in-
crease tResolution in the Set Resolution & Scale... dialog,
and to change the domain of the graph, you must change
tMin and tMax in the Set t,u,v Ranges... dialog.]

The time evolution of the wave-form is shown by the stan-
dard flip-book animation technique; i.e., we plot the above
graph for

T = InitialTime + k·StepSize, k = 0, 1, . . .,

until the user clicks the mouse. The variables InitialTime
and StepSize are set in the dialog brought up by choosing
ODE Settings... from the Settings menu. To make the
animation slower (but smoother) decrease StepSize, and
conversely increase StepSize to make the wave-form evolu-
tion proceed more rapidly, but more jerkily.

As usual, formulas defining a wave form u(x, T ) can depend
on the parameters aa,bb, ..., ii as well as on x and T , and
for each of the canned wave-forms these formulas can be
checked by choosing About This Object... from the Waves
main menu.

In trying to understand features of a wave-form, it helps



to see not only the animated evolution as above, but also
to display the graph of the function u(x, T ) as a surface,
over the (x, T )-plane or to show “time-slices” of this graph.
Therefore the Waves menu has choices to permit the user
to switch between these display methods. (These two al-
ternate formats, being three dimensional objects, can be
viewed in stereo.)

There is also a User Wave Form... item in the Wave menu,
which brings up a dialog permitting the user to enter a
formula for u(x, t) as a function of x, t,aa, . . . ,ii.

Interesting wave-forms generally arise as solutions of so-
called “wave equations”. These are partial differential equa-
tions of evolution type for a function u(x, t). That is,
the function u(x, t) is determined as the unique solution
of a PDE satisfying some initial conditions. Perhaps the
simplest example is the so-called “linear advection equa-
tion” ut + vux = 0 (where v is some constant “veloc-
ity”). This has the general solution u(x, t) = f(x − vt).
But there are also many interesting non-linear wave equa-
tions, in particular the so-called soliton equations, includ-
ing the Korteweg-DeVries (KDV), Sine-Gordon, and Cubic
Schroedinger equations. Many of our examples are pure
soliton solutions of these latter examples.

For a fairly detailed account of the elementary theory of
wave equations, select Introduction to Wave Equations from
the Topics submenu of the Documentation menu.
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The Korteweg-de Vries Equation *

NOTE: For a fuller understanding of the following, you may find it helpful to first read

“About This Category” from the Documentation Menu and “Introduction to Wave Equations”

from its Topics submenu.

The partial differential equation,

ut(x, t) + u(x, t)ux(x, t) + uxxx(x, t) = 0

for a real-valued function, u, of two real variables x and t
(space and time) is known as the Korteweg-de Vries Equa-
tion (or simply KdV). It was first derived in 1895 by D.J.
Korteweg and G. de Vries to model water waves in a shal-
low canal. Their goal was to settle a long-standing ques-
tion; namely whether a solitary wave could persist under
those conditions. Based on personal observations of such
waves in the 1830’s, the naturalist John Scott Russell in-
sisted that such waves do occur, but several prominent
mathematicians, including Stokes, were convinced they were
impossible.

Korteweg and de Vries proved Russell was correct by find-
ing explicit, closed-form, traveling-wave solutions to their
equation that moreover decay rapidly spatially, and so rep-
resent a highly localized moving lump. In fact, they found
a one-parameter family of such solutions:

u(x, t) = 2a2sech 2(a(x− 4a2t), (in 3DXM: a = cc)
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and these are the traveling wave solutions whose evolu-
tions are displayed by 3D-XplorMath, with its parameter
cc playing the rôle of the constant a. Note that the wave’s
velocity, 4a2, is proportional to its amplitude, 2a2, mean-
ing that the taller waves of this family move faster. Both
the fact that such a solution to a non-linear equation could
exist and that one could write it in explicit form were
later recognized to be highly important, although origi-
nally these facts were relatively unnoticed.

The KdV equation did not receive significant further at-
tention until 1965, when N. Zabusky and M. Kruskal pub-
lished results of their numerical experimentation with the
equation. Their computer generated approximate solu-
tions to the KdV equation indicated that any localized
initial profile, when allowed to develop according to KdV,
asymptotically in time evolved into a finite set of localized
traveling waves of the same shape as the original solitary
waves discovered in 1895. Furthermore, when two of the lo-
calized disturbances collided, they would emerge from the
collision as another pair of traveling waves with a shift in
phase as the only consequence of their interaction *. Since
the “solitary waves” which made up these solutions seemed
to behave like particles, Zabusky and Kruskal coined the
name “soliton” to describe them. The formula

u(x, t) =
12 gg (3 + 4 cosh(2x− 8t) + cosh(4x− 64t)√

(3 cosh(x− 28t) + cosh(3x− 36t))

* To see this phase shift, choose Display as Graph from the Action Menu.



is one of these solutions, consisting of two lumps and there-
for called two-soliton solution of KdV, and it is one of the
KdV solutions whose evolution can be displayed using 3D-
XplorMath. Shortly after that, another remarkable dis-
covery was made concerning KdV; a paper by C. Gardner,
J. Greene, M. Kruskal, and R. Miura demonstrated that
it was possible to derive many exact solutions to the equa-
tion by using ideas from scattering theory. In particular,
the solutions whose evolution are shown by 3D-XplorMath
are exact solutions that can be found by this method.

Using modern terminology, we could say that these authors
showed that KdV was an integrable non-linear partial dif-
ferential equation. It was the first to be discovered, but
since then, many other such equations have been found
to be integrable and admit soliton solutions, in particu-
lar the Sine-Gordon Equation (SGE) and the Nonlinear
Schrödinger Equation (NLS)—solutions to both of which
are also shown by 3D-XplorMath. However, KdV is usu-
ally considered the canonical example, in part because it
was the first equation known to have these properties.
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The Sound Category *

While all the other 3D-XplorMath categories are concerned
with the visualization of mathematics—and so make use
of your eyes and sense of sight, in this one you will be
using your ears and your sense of hearing. For this reason
it is important that while using with this category your
computer should be attached to a reasonably high fidelity
sound system—either headphones or stereo loudspeakers
(preferably with a subwoofer).

So far the only exhibit in the Sound Category is the Shep-
ard Tones. For an explanation of this exhibit, select About
This Object after selecting Shepard Tones from the Sound
menu of 3D-XPlorMath or see the following text.
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Shepard Tones *

Ascending and Descending by M. Escher
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If you misread the name of this exhibit, you may have ex-
pected to hear some pretty music played on a set of shep-
herd’s pipes. Instead what you heard was a sequence of
notes that probably sounded rather unmusical, and may
have at first appeared to keep on rising indefinitely, “one
note at a time”. But soon you must have noticed that it
was getting nowhere, and eventually you no-doubt realized
that it was even “cyclic”, i.e., after a full scale of twelve
notes had been played, the sound was right back to where
it started from! In some ways this musical paradox is an
audible analog of Escher’s famous Ascending and Descend-
ing drawing.

While this strange “ever-rising note” had precursors, in
the form in which it occurs in 3D-XplorMath, it was first
described by the psychologist Roger N. Shepard in a pa-
per titled Circularity in Judgements of Relative Pitch pub-
lished in 1964 in the Journal of the Acoustical Society of
America.

To understand the basis for this auditory illusion, it helps
to look at the sonogram (next page) that is shown while
the Shepard Tones are playing. What you are seeing is a
graph in which the abcsissa represents frequency (in Hertz)
and the ordinate represents the intensity at which a sound
at a given frequency is played. Note that the Gaussian or
bell curve in this diagram shows the intensity envelope at
which all sounds of a Shepard tone are played.



A single Shepard tone consists of the same “note” played
in seven different octaves—namely the octave containing
A above middle C (the center of our bell curve) and three
octaves up and three octaves down. Thus the first or “A”
Shepard tone consists of simultaneously playing the fol-
lowing frequencies (in Hertz): 55, 110, 220, 440, 880 1760,
3520, with each frequency being played at the intensity
given by the height of the Gaussian at that frequency. Of
course, what our ear hears it interprets as the note A of the
scale—not the pure tone of A in some particular octave,
but rather a rich harmonic mixture of the A notes from
seven adjacent octaves of which the central one, A above
middle C, sounds most strongly, while the others get less
intense as they go up or down from there.
To get the next (or “B”) Shepard tone, each note of the
above mixture is increased by a “half-tone”, that is, its



frequency is multiplied by the twelfth root of two. And of
course the same bell curve again gives the intensity of each
note of the mixture. Now our ear hears the note B (again
as a rich harmonic mixture) and by our long experience
with the scale, it seems that we have now gone “up” one
half-tone from the first note.
Well, you can take it from there. To get the next (third)
in the sequence of Shepard Tones, we again multiply every
frequency of the B tone by twelfth root of two (i.e., “ascend
a half-tone”) and play each tone at the appropriate inten-
sity for that frequency, as given by the bell curve. Again
it feels to us that this third Shepard tone is a half-tone
“higher” than the second one. And so on for the next nine
Shepard tones.
But then as you will see we are right back to where we
started!
R.S.P. Shepard Tones


