
Stereographic Projection and its Importance*

Stereographic projection was invented for making maps of
the earth and the celestial sphere. It is an angle preserv-
ing map of the sphere minus one point onto the Euclidean
plane.
Complex differentiability (of maps from the plane to the
plane) is the same as real differentiability plus preserva-
tion of oriented angles (except were the derivative van-
ishes). Angle preserving differentiable maps are therefore
important for the theory of complex functions. The stere-
ographic projection can be interpreted as mapping the 2-
sphere to the Euclidean plane, compactified by a point at
infinity. All the complex rational functions can be ex-
tended to infinity, i.e. they can be considered as differ-
entiable, angle preserving maps from the 2-sphere to the
2-sphere. The stereographic projection turns this “can
be considered as” into a simple explicit relation. The 2-
sphere, in this context, is called the Riemann Sphere and
the image plane is called the Gaussian Plane.

In 3D-XplorMath a 3D image of the stereographic
projection can be reached via the last entry of the Action
Menu in the Conformal Map Category. Stereographic pro-
jection is defined as the central projection from one point
on the sphere onto the opposite tangent plane.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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Formulas for the Stereographic Projection

Algebraically it is slightly more convenient to map the
sphere not to the opposite tangent plane but to the paral-
lel plane through the midpoint. More explicitly, the unit
sphere S2 ⊂ R3 is projected from (0, 0,−1) to the plane
{z = 0} (and similar formulas work in all dimensions):

St(x, y, z) :=
1

1 + z
· (x, y, 0), where x2 + y2 + z2 = 1,

because the three points involved lie on a line:
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The inverse map is given by:

St−1(ξ, η) :=
1

1 + ξ2 + η2
·




2ξ
2η

1− ξ2 − η2



 ∈ S2,

because, again, the three points involved lie on a line:
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Claim: Stereographic Projection
maps circles on S2 to circles and lines in the plane.

The case of lines is easier: The line in the image plane and
the projection center define a plane. This plane intersects
the sphere in the preimage circle of the line. – In other
words: all circles on the sphere which pass through the
projection center are mapped to lines.

For every circle {(ξ, η); (ξ −m)2 + (η − n)2 = r2} in the
image plane one can easily compute the plane of the preim-
age circle, while the other direction needs a case distinction
because of the lines.
We put ξ2 +η2 := 2mξ +2nη + r2−m2−n2 into the third
component of the preimage formula. Then clearly

(1 + ξ2 + η2) · (z + mx + ny + r2 −m2 − n2 − 1) = 0,
which shows the equation for the plane of the preimage.

Claim: Stereographic Projection preserves angles.

Through every point p ∈ S2 and tangential direction v
there exists a circle on the sphere which passes through
the projection center and through p and is tangential to
v. Every such circle is mapped to a line which is parallel
to the tangent of that circle at the projection center. The
image lines of two such circles therefore intersect with the
same angle as the two preimage circles, and the two preim-
age circles were chosen to represent an arbitrary angle on
the sphere. – One can also prove this by computing with
the derivative of the stereographic projection.
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The image in 3D-XplorMath shows a nice proof of why
circles are mapped to circles. A circle on the sphere and
the projection center define a quadratic cone (unless the
circle passes through the center and the image is a line).
In general, therefore, the image of the circle is an ellipse.
And all planes parallel to the image plane cut this cone in
similar ellipses.

To prove that they are circles we show that their axes are
equal. We add the line which joins the projection center
and the midpoint of the image ellipse and we intersect
it, at m, with the diameter of the circle (on the sphere)
that is in the symmetry plane of the figure. Now consider
the ellipse which intersects the cone in the parallel plane
through m. Its axis orthogonal to the symmetry plane and
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the mentioned diameter of the circle are two intersecting
secants of the circle. For their two subsegments holds:
axisA2 = D1 · D2. The other, axisB, has its two halfs as
edges of similar triangles which also have the edges D1,D2.
So we conclude D1 · D2 = axisB2, hence axisA = axisB.
– Note that the three shaded triangles are similar: two of
them are bounded by parallel segments and the bottom
triangle has the angle at the cone vertex equal to the angle
of the top triangle opposite axisB.

A remarkle property of the formulas for stereographic pro-
jection and its inverse is: They map points with rational
coordinates to points with rational coordinates! For exam-
ple, if we stereographically project a tangent line to the
unit circle, then the rational points on the line give us all
rational points on the circle! Multiply (p/q)2 + (s/t)2 = 1
by the denominators to get all Pythagorean triples.

A differential geometric result in Dimension 3 and higher
says: Any angle preserving map between spaces of constant
curvature maps planes and spheres to planes and spheres.
For people with that background it is therefore obvious
that stereographic projection maps circles to circles.

In 3D-XplorMath one has stereo vision available so that
one can see visualizations of images on the Riemann sphere
in 3D. This shows the symmetries, for example, of the
doubly periodic functions much more clearly than their
images in the Gaussian plane do.
HK.
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