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The close connection between minimal surfaces and complex
variables was worked out in the second half of the 19th century
and resulted in a flourishing of the theory of minimal surfaces.
One consequence of this new insight is the so-called Weierstrass
representation formula for minimal surfaces. Originally this rep-
resentation was a local one that only in exceptional cases allowed
the representation of a complete surface. It was not until the
work of Osserman (1962) that it became clear that the Weier-
strass representation was in fact global. Unfortunately it is con-
siderably more difficult to explain the global interpretation of
the Weierstrass representation than it is to write down the local
formula. Moreover, the input data for global numerical compu-
tations are much more complicated than what is needed in order
to draw just a local piece of a surface. For these reasons, the
dialog box in 3DXplorMath for user defined Weierstrass repre-
sentaions only allows for the making of a local patch, and it is
only the local formulation that we discuss below.

The input data for the local Weierstrass representation are two
complex differentiable functions f, g defined on a region U of
the complex plane. A basic fact for the representation formula
to work is that the integral of a complex differentiable function
along a curve gives a constant result if the curve is deformed
keeping both end points fixed. We can therefore define a dif-
ferentiable map F from the simply-connected region U into R3,
by specifying a three-dimensional integrand in terms of f and g,
and then integrating from a fixed base point ∗ ∈ U and taking
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the real parts:

z 7→ F (z) := real
(

∫

z

∗

(

(1−g(z)2), i(1+g(z)2), 2g(z)
)

f(z)dz
)

The surface piece defined by this map is always a minimal sur-
face piece, and this formula therefore allows a user of 3DXM to
view as many minimal surface pieces as desired. A short com-
putation shows that the function g has a very nice geometric
interpretation. It is customary to associate a unit vector u in
R3 to each complex numbers w, by considering the complex
plane as the x-y-plane in R3 and taking u to be the inverse
image of w under stereographic projection. (To see examples
choose in the Conformal Category for any selected function in
the Action Menu Show Image On Riemann Sphere.) If one asso-
ciates in this way a unit vector u to w = g(z), then one obtains
for u a unit vector orthogonal to the surface at F (z). In other
words: the function g composed with stereographic projection
gives the normal Gauss map of the surface. The normal Gauss
map is basic in the study of surfaces, and for example the various
curvatures considered by differential geometers all have simple
expressions in terms of the normal Gauss map. A geometric in-
terpretation of the function f is much less immediate and this
is perhaps one reason why it took so long for the above formula
to be understood globally.

Sufficiently small pieces of any minimal surface are realistic mod-
els of soap films—provided the derivative of the parametrizing
map F never vanishes. A point on a minimal surface where the
derivative of F vanishes is called a branch point. Since soap
films do not have branch points, one wants to look at minimal
surfaces without branch points, and this can be decided from
the Weierstrass data as follows:

If the function f has a zero at some point z0 then the derivative of
F at z0 vanishes unless the other part of the integrand becomes
infinite. At such points, where g(z0) is infinite, f needs to have
a zero of twice the order as the infinity (pole) of g at z0. If the
order of the zero of f is larger than this then one still has a
branch point and if the order of the zero is smaller, then F (z0)
itself is infinite, so we do not get a point on the surface. The
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default examples allow one to contemplate these facts.

Note that we use polar conformal coordinates, that is,
z = exp(u + iv), with umin ≤ u ≤ umax, 0 ≤ v ≤ 2π.
The unit circle is the image of u = 0.

The Catenoid data have a pole at z = 0, and indeed there is no
corresponding point on the catenoid. The situation is similar at
z = ∞ so that the catenoid is parametrized by a sphere minus
two points. – If f is changed to i · f then one obtains the so
called conjugate surface. In this case one obtains the helicoid, a
singly periodic surface since integration of the Weierstrass inte-
grand once around z = 0 adds a period to the third coordinate
function. To see larger pieces of the helicoid, increase the range
of v, i.e., integrate more than once around z = 0. – The ’Cyclic
Associated Family Morph’ turns the Catenoid inside out.

The Henneberg surface is a simple surface with branch points.
These are at the 4th roots of unity since f has zeros there, but
g is not infinite at those points. Note that the branch points lie
on the parameter line u = 0, on the F-image of the unit circle.
The Henneberg surface has Enneper ends at z = 0 and at ∞.
– The default Cartesian grid touches only one branch point so
that the image is less complicated than in the polar case.

The Enneper surfaces are parametrized by the full complex
plane, and are therefore the simplest minimal surfaces to repre-
sent graphically. Note that a change of f by a unitary factor,
exp(iϕ) · f(z) gives in general an isometric but non-congruent
surface of the associated family. The Enneper surfaces are ex-
ceptional since all members of the associated family are actually
congruent. – For the classical picture choose aa=2 and ’Carte-
sian Grid’. – For the most general Enneper surface take f con-
stant and g a polynomial.

The Trinoid, bb = 3, has poles of f at the 3rd roots of unity.
The Weierstrass map F is therefore not defined at those points.
It is not obvious to see what happens at those points since
the polar coordinates that the user defined surfaces use are not
adapted to the situation. Compare the case ee = 3 of the Sym-
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metric kNoids in the list of 3DXM minimal surfaces. – Choosing
the default ’Cartesian Grid’ is most instructive for the Fournoid,
our bb = 4 default. As in all cases the ’Cyclic Associated Family
Morph’ is interesting.

Even the simplest surfaces can be given by Weierstrass data from
which one does not immediately recognize the surface. Try:
g(z) = (zk − 1)/(zk + 1), f(z) = 0.8i(zk + 1)2,
−1.8 ≤ u ≤ 0.2, 0 ≤ v ≤ 2π, (k = 0, 1, 2, 3, 4).
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