Explicit versus Implicit Surfaces,

in particular Level Sets of Functions *

Surfaces in R3 are either described as parametrized images
F : D? — R? or as implicit surfaces, i.e., as levels of func-
tions f : R® — R, as the set of points where f has some
given value, i.e. {x € R>; f(x) = given}. Graphs of func-
tions h : R? — R are both: F(u,v) := (u,v,h(u,v)) is
a parametrization and f(x,y,z) := h(x,y) — z is a level
function, f = 0 the implicit equation.

For most simple surfaces one has both representations, ex-
amples in 3DXM: All Quadratic Surfaces, Tori, Cyclides,
Cross-Cap, Steiner Surface, Algebraic Boy Surface, Whit-
ney Umbrella. In each case, the explicit and the implicit
version open the same Documentation.

One can more easily make images of parametrized surfaces
than of implicit surfaces, because every point p € D can be
mapped with the given function F' to obtain ‘explicitly’ a
point F'(p) of the surface. Note however that the opposite
problem: “Given a point in R?, decide whether it lies on
the surface” does not have an easy answer. For an implicit
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surface, on the other hand, it is easy to decide whether a
given point in R? is on the surface (simply check f(z)), but
no point is given explicitly, one has to use some algorithm
to find points x € R? which satisfy f(z) = given value.
Even after one has found many points on the surface, how
does one connect them, what is a good way to represent
the surface? The method of raytracing has been invented
as one solution. Choose some center point C, think of it to
be near the eyes of the viewer. Connect each pixel of the
screen with C' by a line and decide whether this line meets
the surface. If it does then of all the intersection points
on the line choose the one closest to C', compute the nor-
mal of the surface at this point = (i.e. compute grad f(x))
and decide with this information what light (from fixed
light sources) will be reflected by the surface at x towards
C'. Color that pixel accordingly. In this way one produces
an image which presents the surface as if it were an illumi-
nated object. The computation used to take very long, but
todays computers do such pictures while you wait, but not
quite fast enough for real time rotations. These pictures
look very realistic, but of course they show only what is
visible from the viewer, in particular: farther away parts
of the surface can be hidden by nearer parts.

In 3D-XplorMath a second method is offered. Imagine that
the surface is intersected with random lines until around
10 000 points have been found on the implicit surface. Then
red-green stereo is used to project these points to the screen.
When viewing through stereo glasses we see all these points



in the correct position in space and our brain interpolates
them and lets us see a surface in space. This representa-
tion shows all parts of the surface (within some viewing
sphere), not just the front most portions. Since one can
achieve fairly uniform distributions of points on level sur-
faces, one sees many points in the direction towards con-
tours of the surface. This emphasis of the contour points
is so strong that one gets a fair impression of the surface
even if one does not look through red-green glases. This
method is fast enough for real time rotations.

Once an implicit surface has been drawn, one has solved
the problem of computing the 3D-data of surface points
selected by mouse on the screen. One can therefore more
easily move geometric attributes, like curvature circles,
around on an implicit surface than on a parametrized sur-
face. See in both cases the Action Menu entry Move Prin-
cipal Curvature Circles.

What surfaces can one see?

In addition to the simple surfaces already mentioned we
have two groups. Alebraic Surfaces which have been stud-
ied because of their singularities, these have established
names and extensive literature. And Compact Surfaces
of higher genus, these are added because such surfaces do
not come with explicit parametrizations. (Their names are
given in 3DXM and not known elsewhere.) Already fairly
simple functions may have level surfaces which are more
complicated than tori, they are called bretzel surfaces of
genus g > 1.



How to find functions with compact levels of genus > 2.
As an example, consider two circles of radius r = 1, in the
xr-y-plane, with midpoints cc on the x-axis. These two
circles are described as the intersection of the x-y-plane:
{9(z,y,2) := z = 0} with the zero set of the function

((z—co)’ +y* = 1) - ((x+ o) +y* — 1)
L+ (1 +ce)(x? 4 y2) |

The denominator prevents the function from growing too

fast, the weight factor 1 + cc is experimental. Next define

f(z,y,2) = h(z,y,2)° + (1 + co)g(a,y, 2)°.

Clearly, the zero set of f is the union of the two circles,
which is not a surface, because grad f vanishes along this
zero set. However, most of the levels {(z,y, 2); f(z,y, 2) =
v > 0} are surfaces without singularities. If the two circles
intersect (0 < cc < 1), then for small v = ff the levels are
the boundary of a thickening of the two circles, i.e., surfaces
of genus 3. As ff increases either the middle hole or the
two outside holes close first (depending on cc). For large
ff the level surfaces are (not completely round) spheres.
Each time such a topological change occurs we observe one
special surface, it is not smooth like the other levels, but
has one or more cone like singularities.

If cc > 1 then, for small ff, the levels are disjoint tori.
As ff increases, either the tori grow together to a genus
2 surface, or the holes of the tori close first and later the
two sphere-like surfaces grow together.

This family is called Pretzel in 3DXM.

h(x,y,z) =



Functions with compact levels in 3D-XplorMath

One should always experiment with the level value v of the
function f. In 3DXM: v = ff. For small values of ff one
will see how the function was designed by guessing the de-
generate level f = (0. The Default Morph often varies ff,
for example showing non-singular levels converging to the
singular one. In some cases other parameters are morphed,
for example to get larger values of the genus g. Some cases
offer: Flow to Minimum Set {f = 0} (see Action Menu).
(Artificial looking denominators in the following prevent
the function f from growing too fast.)

Note that the Action Menu has many decorations for im-
plicit surfaces: Curvature line fields, net of curvature lines,
normal curvature circles, geodesics with mouse chosen ini-
tial data, geodesic nets.

Pretzel: See page 5 of Explicit versus Implicit Surfaces.

The surface has genus 0,1,2 or 3, depending on parameter

values.

flz,y,2) = h(x,y, 2)? + (1 + cc)z? with

(( —ce)’ +y> — 1) - ((x + cc)? +y° — 1)))
1+ (1+ce)(@® +y7)

h(x,y,z) =

Bretzel2, a genus 2 tube around a figure 8, genus 0 for
large ff:
i . (1 —2%)2® —y*)* + 2%/2)

SIS (@ 4 2+ 22)

Bretzel5, a genus 5 tube around two intersecting ellipses:
fl@,y,2) = (2" +y°/4—1)- (@*/4+y* = 1))* + 2% /2.
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Pilz, a genus 3 tube around circle and orthogonal ellipse:
flz,y,2) =

(22 2 12+ (2~ 0.5)2) - (42 /aa® + (= + cc)? — 1)2 +2?)
— dd?(1 + bb(z — 0.5)?).

Default Morph:0.03 < cc < 0.83.

Orthocircles, a genus 5 tube around three intersecting or-
thogonal circles (aa = 1, ff = 0.05) or a tube around
three Borromean ellipses (aa = 2.3, ff = 0.2) — choose in
the Action Menu.

f(@,y,2) =

((z%/aa+y* —1)*+2%) - ((y*/aa + 2* — 1)* + 27) -
((22/aa + 2% — 1)% + y?).

Use: Flow to Minimum Set {f = 0} (from Action Menu).

DecoCube, tube around six circles of radius cc on the faces
of a cube. Genus 5,13,17, depending on cc, ff:

fl@,y,2) = (22 +y° —cc?)? + (22 = 1)?) -

((y* +2%2 —cc®)? + (2% = 1)) - ((2° +2° —cc?)* + (y* — 1)°).
Default Morph: ff =0.02, 0.25 <cc<1.3.

Use: Flow to Minimum Set {f = 0} (from Action Menu).

DecoTetrahedron has as its minimum set four circles on the
faces of a tetrahedron. The formula is similar but more
complicated than the previous one. cc changes the radius
of the circles, bb changes their distance from the origin, ff
selects the level. Use: Flow to Minimum Set to see the
circles used for the current image.

The Default Morph changes cc and with it the genus.




JoinTwoTori is a genus 2 surface such that the connection
between the two tori does not much distort them if ff is
small. (It is used for genus-2-knots in Space Curves.)

Torrignt == ((x — cc)® + y* + 2° — aa® — bb?)?
+ 4aa?(2* — bb?)
Toriert = ((x + cc)* + y? + 2% — aa® — bb?)?
+ 4aa®(2* — bb?)
B Torrignt - Toreft
14 (x—ce)?2 4 (x+ce)? +y? +22/2

The Default Morph: 0.01 < ff < 2.5 joins the tori.

flz,y,2):

CubeOctahedron

The level surfaces of the function

feuve (T, y, 2) := max(|z|, |y|, |z]) are cubes.
The level surfaces of the function

focta(T,y, 2) = || + |y| + |2| are octahedra.

& = min(2 - aa, 1), b := 2 - min(bb,1). These coefficients
for the following linear combination allow an interesting
morph.

flx,y,z) == max(a - focta(T,y,2) + b feupe(T, 9y, 2)).
Default: aa = 0.5,bb = 1, ff = 1. This truncated cube is
Archimedes’ Cubeoctahedron.

Default Morph: aa = % o %, bb=0.5— 1.5, ff =1.
This deformation from the octahedron to the cube passes

through three Archimedean solids.



Algebraic Functions with Singularities in 3DXM

CayleyCubic :

f(z,y,2) =4(x* +y* +2*) +16xy2z—1, ff=0.

This cubic has 4 cone singularities at the vertices of a tetra-
hedron. The other surfaces in the Default ff-Morph are
nonsingular.

ClebschCubic :

f(@,y,2) =

81(x3 +y> +2%) —189(z2(y + 2) + y* (2 + z) + 2% (x + y)) +
Sdwyz+126(xy+yz+z22) —9(r* +x+y* +y+22+2)+1.
This cubic has no singularities but is famous for the 27
lines that lie on it. The lines are shown in 3DXM. The
surface has tetrahedral symmetry.

DoublyPinchedCubic :

f(xy,2) = 2(2® + y°) —2® + ¢°.

This cubic has two pinch-point singularities at &1 on the
z-axis. The segment between the singularities lies on it.
The whole z-axis satisfies the equation; the Default Morph
shows how an infinite spike converges to this line.

KummerQuartic :

A= (3aa? —1)/(3 — aa?),

f(x,y,2) = (2* +y° + 2% — aa®)?
—AM(1=2)?=22%)((1+2)* = 2y?), aa =1.3.

This quartic has 4412 cone singularities and tetrahedral

symmetry. Six noncompact pieces, each with two cone

points, are connected by five compact pieces which look like

curved tetrahedra. The singularities survive small changes,

see the Default Morph : 1.05 < aa < 1.5, ff = 0.
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BarthSextic :

c1:=B+V5)/2, ca:=2++5

f(@,y,2) =

4(cr2? —y*)(cry? — 22)(c12° — %) —ca(2? +y? + 22 — 1)2.

Barth’s Sextic has icosahedral symmetry. 20 tetrahedron-
like compact pieces are placed over the vertices of a do-
decahedron so that each tetrahedron has 3 of its vertices
at midpoints of dodecahedron edges. This accounts for 30
of the cone singularities. Each of the 20 outward pointing
vertices of the tetrahedra is connected via a cone singu-
larity to a cone-like noncompact piece of the Sextic. The
Default Morph embeds this singular surface in a family of
nonsingular sextics. Use Raytrace Rendering.

Dj
f(z,y,2) := 423 + (aa — 3z)(x* + y?) + bbz*
This family of cubics has a D4-singularity. At bb = 0 the

family degenerates into three planes, intersecting along the
Z-axis.

UserDefined: Our example is the Cayley Cubic, see above.

H.K.

10



