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About The Dragon Curve*

see also: Koch Snowflake, Hilbert SquareFillCurve
To speed up demos, press DELETE

The Dragon is constructed as a limit of polygonal approx-
imations Dn. These are emphasized in the 3DXM default
demo and can be described as follows:
1) D1 is just a horizontal line segment.
2) Dn+1 is obtained from Dn as follows:
a) Translate Dn, moving its end point to the origin.
b) Multiply the translated copy by

p
1/2.

c) Rotate the result of b) by −45◦ degrees and call the
result Cn.

d) Rotate Cn by −90◦ degrees and join this rotated copy
to the end of Cn to get Dn+1.

The fact that the limit points of a sequence of longer
and longer polygons can form a two-dimensional set is not
surprising. What makes the Dragon spectacular is that it
is a continuous curve whose image has positive area—
properties that it shares with Hilbert’s square filling curve.

There is a second construction of the Dragon that makes
it easier to view the limit as a continuous curve and is also
similar to the constructions of the following curves. Select
in the Action Menu: Show With Previous Iteration.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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This demo shows a local construction of the Dragon: We
obtain the next iteration Dn+1 if we modify each segment
of Dn by replacing it by an isocele 90◦ triangle, alternat-
ingly one to the left of the segment, and the next to the
right of the next segment. This description has two advan-
tages:
(i) Every vertex of Dn is already a point on the limit curve.
Therefore one gets a dense set of points, c(j/2n), on the
limit curve c.
(ii) One can modify the construction by decreasing the
height of the modifying triangles from aa = 0.5 to aa = 0.
The polygonal curves are, for aa < 0.5, polygons without
self-intersections. This makes it easier to imagine the limit
as a curve. In fact, the Default Morph shows a deformation
from a segment through continuous curves to the Dragon—
more precisely, it shows the results of the (ee = 11)th it-
erations towards those continuous limit curves.

The Dragon is a fractal tile for the plane., see several ver-
sions at http://en.wikipedia.org/wiki/Dragon−curve.
For two beautiful possibilities select from the Action Menu
Tile Plane With Dragon Pairs, or: Tile Plane With
Dragon Quartetts.

Finally, one can choose in the Action Menu to map any
selected Fractal curve by either the complex map z → z2

or by the complex exponential. The program waits for a
mouse click and then chooses the mouse point as origin.

R.S.P., H.K.
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About the Koch Snowflake (or Island)*
The Koch Snowflake Curve (aka the Koch Island) is a frac-
tal planar curve of infinite length and dimension approx-
imately 1.262. It is defined as the limit of a sequence of
polygonal curves defined recursively as follows:
1) The first polygon is an equilateral triangle.
2) The (n+1)-st polygon is created from the n-th polygon

by applying the following rule to each edge: construct
an equilateral triangle with base the middle third of
the edge and pointing towards the outside of the poly-
gon, then remove the base of this new triangle.

Note that at each step the number of segments increases
by a factor 4 with the new segments being one third the
length of the old ones. Since all end points of segments
are already points on the limit curve we see that no part
of the limit curve has finite length.
Actually this is true for a 1-parameter family of similar
constructions: Vary the parameter aa (Set Parameters
in the Settings Menu) in the interval [0.25, 0.5] and watch
how the iterations evolve or choose Morph in the Animation
Menu and observe the deformation of the limit curves.
Hausdorff Dimension: Consider the union of those disks
which have a segment of one polygonal approximation as
a diameter, then this union covers all the further approx-
imations. From one step to the next the diameter of the
disks shrinks to one third while the number of disks is mul-

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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tiplied by 4—so that the area of these covering disk unions
converges to zero. The fractal Hausdorff d-measure is de-
fined as the infimum (as the diameter goes to zero) of the
quantity (diameter)d× (number-of-disks), and the fractal
Hausdorff dimension is the infimum of those d for which the
d-measure is 0. This shows that the Hausdorff dimension
of the Koch curve is less than or equal to log(4)/ log(3),
and since the union of the disks of every second segment
does not cover the limit curve one can conclude that the
Hausdorff dimension is precisely log(4)/ log(3).
The artist Escher has made rather complicated fundamen-
tal domains for tilings of the plane by modifying the bound-
ary between neighboring tiles. This idea can be used to il-
lustrate the flexibility of fractal constructions: Select from
the Action Menu of the Koch Snowflake Choose Escher
Version and observe:
The new polygonal curves remain boundaries of tiles of the
plane under the iteration steps that make them more and
more complicated.
Finally, one can choose in the Action Menu to map any
selected Fractal curve by either the complex map z → z2

or by the complex exponential. The program waits for a
mouse click and then chooses the mouse point as origin.
Note that one gets the graph of a continuous function if
one plots the x-coordinate of a continuous curve against
the curve parameter. This can be viewed with the last
Action Menu entry.
H.K.
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About Hilbert’s Square Filling Curve*

See also: Koch Snowflake, Dragon Curve
Speed up demos by pressing DELETE

In 1890—the year the German Mathematical Society was
founded, David Hilbert published a construction of a con-
tinuous curve whose image completely fills a square. At
the time, this was a contribution to the understanding of
continuity, a notion that had become important for Analy-
sis in the second half of the 19th century. Today, Hilbert’s
curve has become well-known for a very different reason—
every computer science student learns about it because the
algorithm has proved useful in image compression. In this
application one has to enumerate a first square, its four
half size subsquares, their sixteen quarter-size subsquares
and so on, in such a way that squares whose numbers are
close are also close to each other geometrically. In other
words, the continuity of this space filling curve is now im-
portant, in contrast to the fact that the curve was consid-
ered a pathological example of continuity for many years
after Hilbert’s discovery.

It was known in 1890 that such a curve, i.e., a continuous
map c of [0, 1] onto [0, 1]× [0, 1], could not be one-to-one,
i.e., Certain pairs of points t1, t2 of the interval [0, 1] must

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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have the same image c(t1) = c(t2) ∈ [0, 1] × [0, 1]. This
led Hilbert to give a special twist to his construction: He
gave a sequence of polygon approximations of the strange
limit curve that, surprisingly, were all one-to-one! In retro-
spect it seems almost as if Hilbert foresaw what would be
needed a century later in image compression; when people
say that they are using Hilbert’s square-filling curve, they
mean more precisely that they are using Hilbert’s approx-
imations to that curve!

The basis of Hilbert’s construction is a single step that is
repeated over and over again. We first explain a simpli-
fied version, although this does not exactly give Hilbert’s
one-to-one approximations that made the construction so
famous. Assume that we already have a curve inside the
square and joining the left bottom corner to the right bot-
tom corner. 3DXM offers four different initial such curves,
leading to quite different pictures. The basic construction
step is to scale the square and its curve by 1

2 and put four
copies of this smaller square side by side in the original
square, in such a way that these four smaller copies of
the curve fit together to form a new curve from the left
bottom corner to the right bottom corner of the original
square. But instead of reading more words, we suggest
that you view the default approximations of the Hilbert
curve in 3DXM. We use a rainbow coloration to emphasize
the continuous parametrization, and we repeat the colors
four times to emphasize that four copies of the previous
approximation make up the new one.
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The two end points of the curve (to which this basic iter-
ation step is applied) play a special role, on the one hand
they lead at each iteration step to more points that are al-
ready points on the limit curve, on the other hand exactly
these easy points lead to double points on the approxi-
mations! Hilbert therefore removed small portions of the
curve near its two end points before he applied the above
iteration step. One can see how these Hilbert approxi-
mations manage to stay one-to-one and how they wander
through all the little squares of the current subdivision of
the original square—and these are just the properties used
in image compression.
In 3DXM one can choose with the parameter cc between
several initial curves. An even number and the follow-
ing odd number choose the same curve, but for even cc the
Hilbert iteration is done without the endpoints and for odd
cc including the endpoints. In the Action Menu one can
switch between Hilbert’s approximation (cc=0) and one
that emphasizes the iteration of the endpoints (cc=5).

Finally we add to the above descriptive part some more
technical explanations, namely how to understand the limit
as a continuous curve. Select the Action Menu entry “Em-
phasize Limit Points”. The first shown step (for our de-
fault value cc = 5) is a curve that is mostly a straight
segment, but has also two little wiggles, that emphasize
the initial point c(0) and the end point c(1). The second
step is a curve with four straight segments that join five
wiggles, the points c(j/4), j := 0, . . . , 4. These points are
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really points on the limit curve because they remain fixed
under all further applications of Hilbert’s basic construc-
tion step. In the third step we get 17 wiggles, the points
c(j/16), j := 0, . . . , 16 of the limit curve, and so on. The
3DXM demo shows six such iterations. One can deduce
from this the continuity of the limit curve if one proves for
these approximations:

|t2 − t1| ≤
1
4n
⇒ |c(t2)− c(t1)| ≤

1
2n

.

Early iterations for bb = 0.4 (left), for bb = 0.5 (right, the
Hilbert case).

H.K.
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The Sierpinski Triangle, The Sierpinski Curve*

The Sierpinski Triangle is a well known example of a “large”
compact set without interior points. It is defined by the
following construction:
Start with an equilateral triangle and subdivide it into
four congruent equilateral triangles. Remove the middle
one. Subdivide the remaining triangles again and remove
in each the middle one. Repeat this procedure. Each step
reduces the area by a factor 3/4. – But more is true:

Sierpinski’s Triangle is the image of a continuous curve.

As in the other fractal curves in 3DXM we have to define
an iteratively defined and uniformly convergent sequence
of polygonal curves. As in the case of the Hilbert square
filling curve there is an easier construction by non-injective
curves which, however, can be modified to give better look-
ing injective approximations. In the following illustration
we have chosen the 3DXM parameter bb = 0.49, because
for bb < 0.5 the easier construction also gives injective ap-
proximations. (bb = 0.5 gives Sierpinski’s curve.)

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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The starting polygonal curve has the vertices and the edge
midpoints of an equilateral triangle as its vertices. The ini-
tial point is the midpoint of the bottom edge. The curve
that joins every second vertex of the starting curve is the
triangle in the middle. We view the starting curve as pass-
ing through two edges of each of the three outer triangles.
We only have to describe for one of these triangles how the
next iteration is obtained. We will obtain curves that al-
ways run through two edges of each triangle, and the basic
iteration can always be applied. If we join every second
vertex of the resulting curves then we obtain the injective
approximations of the Sierpinski Curve.
The basic iteration step, for one triangle:
First add the two midpoints of the traversed edges of the
triangle. Two more points are added, one over the first
and one over the last of the four subsegments. The points
lie in the inside of the traversed triangle and they are the
tips of isocele triangles whose base is the first, resp. the
last, of the four subsegments. In the case of the Sierpin-
ski Curve these isocele triangles are in fact equilateral. If
the parameter bb is smaller than 0.5 then the height of
the isocele triangle is by the factor bb/0.5 smaller than the
height of the equilateral triangle – thus avoiding the cre-
ation of double points of the approximation.
The iterated polygonal curve joins the initial point of the
first edge to the first tip, continues to the first edge-midpoint,
passes through the vertex of the original triangle to the
second edge-midpoint, continues through the second tip
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and ends at the final point of the last segment. The iter-
ated polygonal curve traverses three triangles, two edges
in each. Therefore the iteration step can be repeated.
The default Morph from the Animation Menu of 3DXM
varies bb from 1/3 to 1/2 thus joining the first triangle
contour by a family of continuous (and injective) curves to
the Sierpinski Curve.
Finally, one can choose in the Action Menu to map any
selected Fractal curve by either the complex map z → z2

or by the complex exponential. The program waits for a
mouse click and then chooses the mouse point as origin.

H.K.
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About Hilbert’s Cube Filling Curve*

See also: The more famous Hilbert SquareFillCurve.

Hilbert’s cube filling curve is a continuous curve whose im-
age fills a cube. It is a straight forward generalization of
the continuous square filling curve. It is shown in anaglyph
stereo via a sequence of polygonal approximations. Each
approximation is a polygon that joins two neighboring ver-
tices of the cube.
The iteration step goes as follows:
The cube with the given (initial or a later) approxima-
tion is scaled with the factor 1/2. Eight of these smaller
copies are put together so that they again make up the
original cube, and this is done in such a way that the end-
point of the curve in the first cube and the initial point of
the curve in the second cube fit together, and so on with
all eight cubes. The result of one iteration therefore is a
curve that is four times as long as the previous curve and
that runs more densely through the cube. In 3DXM, if
one rotates the cube with the mouse then the cube and its
first subdividing eight cubes are shown together with one
iteration of the initial curve.

To achieve a better feeling for the iteration step, one can
set the parameter cc to integer values between 0 and 5.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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This will select different initial curves. An even value of
cc and the following odd value give the same initial curve,
but for even cc the Hilbert iteration is done without the
endpoints, while for odd cc the endpoints are included in
the iteration. (Using the Action Menu, one can switch be-
tween Hilbert’s default (cc=0) and a case that emphasizes
the iteration of the endpoints, cc=5.)
We have the same situation as in the two-dimensional case:
The endpoints and their iterates are points that already lie
on the limit curve because they are not changed under fur-
ther iterations. One can say that the endpoints and their
iterates are related to the limit curve in a very simple way.
On the other hand, the approximating polygons develop
double points at these iterates and the result is that the
approximations look much more confusing if the endpoints
and their iterates are included in the iteration. This is why
we offer the choice between iterating with and without the
endpoints.

H.K.
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Henon Map*

The Henon Map visualization gives the orbit under itera-
tion of the map (x, y)→ (y + 1− aa x2, bb x).

The default values are aa = 1.4 and bb = 0.3. The initial
point is (x, y) = (cc, dd) with the defaults cc = 1.0, dd =
1.0. The number of iterations plotted is ee, but the first
ff iterates are omitted. The defaults are ee = 3000 and
ff = 20.

In 3DXM, to move the finished image, drag the image with
the mouse. To zoom in our out, drag vertically with the
Shift key pressed. (If you zoom in, you might want to
increase parameter ee using Settings > Set Parameters.)

To zoom into a particular region, hold down Command and
then drag a rectangle in the window, then the program will
zoom into that region of the Henon attractor, allowing you
to see it in greater detail.

(Morphing aa and bb works, but there is no default morph,
so first select Set Morphing... from the Settings menu to
set up the morph—be sure to click the Init To Current
Values button, then change aa0 aa1, bb0 and bb1.)

H.K.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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About The Feigenbaum Tree*

See also: Julia Set of z → (z2 − c)

The Feigenbaum Tree is one of the earliest examples of
parameter dependent behavior of a dynamical system. The
dynamical system in question is called the Logistic Map:

fµ(y) := 4µ · y(1− y), y ∈ [0, 1], µ ∈ [1/4, 1].

Since both the parameter space, [1/4, 1], and the dynami-
cal space, [0, 1], are 1-dimensional, one can illustrate in a
(µ, y)-plane how the dynamical behavior changes as the pa-
rameter µ varies. The usual experiment (and the one used
in 3DXM) goes as follows: Starting with a set of initial
values {yk; yk ∈ [0, 1], k = 1, . . . ,K} (and with as many
parameter values µ as one wants to handle) one computes
many iterations f◦nµ (yk), n = 1, . . . , N with N large.

If one plots only the iterations with say n ≥ 1000, then one
observes in the (µ, y)-plane the Feigenbaum Tree: for small
µ the iterated points f◦nµ (yk) converge to a stable fixed
point of the map fµ, yf = fµ(yf ), yf := 1−1/4µ. Observe
that the derivative f 0 at the fixed point is 2− 4µ ≤ 0. At
µ = 3/4 the derivative at the fixed point is −1, so that
the fixed point stops being attractive. It turns out that
for larger µ the orbit of period 2 is attractive for a while

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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– until µ reaches another bifurcation point after which an
orbit of period 4 becomes attractive.

This period doubling “cascade” continues up to a certain
µ-value, past which there is for a while no longer an attrac-
tive orbit. All this is clearly visible in the 3DXM demo.
One should use the Action Menu entry: Iterate Mouse
Point Forward to watch how arbitrary initial points are
iterated and how these iterations converge to the attract-
ing orbits of period 2d in the left, period doubling, part of
the Feigenbaum Tree. —Speed-Up Note: If one presses
DELETE either during the default iterations or during the
iteration of a point chosen by mouse, then all delays are
skipped and the result of the iteration is reached quickly.

After the period doubling in the left part has been ob-
served one wants to look at the right part of the Feigen-
baum Tree more closely. The µ-interval which the illus-
tration uses is the interval [bb, cc]. It can be changed in
the Parameter entry of the Settings Menu. Since the at-
tractive orbit of period 2 appears after µ = 0.75, one loses
only the simple attractors if one increases bb from 0.25 to
0.75, and one gains that the remaining part of the Tree
is stretched by a factor of 3. In the same way one can
magnify any part of the parameter space. Of course the
dynamical space is always fully shown—unless one decides
to use SHIFT+MOUSE to scale the image to see part of
the dynamical space magnified. In this case translation
using CONTROL+MOUSE-DRAG may be useful.
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The most obvious feature in the right part of the Feigen-
baum Tree are gaps, three fairly large ones and any number
of thinner ones. The three large ones belong to parameter
intervals where the map fµ has attractive orbits of period
6, period 5, resp. period 3. If one magnifies a gap enough,
one can experimentally check that the gaps belong to at-
tractive orbits (use in the Action Menu Iterate Mouse
Point Forward). One also observes that at the right end
of these intervals the periods double again, and again. In
other words, the Feigenbaum Tree illuminates, almost at
the first glimpse, many properties of this 1-parameter fam-
ily of iterated maps.

The Action Menu has been expanded by four entries It-
eration Invariant Density (either with mouse choice of
aa = µ or previous aa) and Density Function (again with
mouse choice of aa or previous value). Before one chooses
any of these one should look at Iterate Mouse Point
Forward, where one sees how the iterated point, given by
the vertical coordinate y, jumps around with fixed µ. The
Iteration Invariant Density expands this: 1000 dif-
ferent y-values are chosen and represented in the left-most
column on the screen. These points are iterated and shown
in the second column, iterated again and shown in the third
column, and so on, 400 times. Except for the first few
columns one clearly sees a density pattern develop: all the
vertical columns look essentially alike. This can be studied
further with the entry Density Function: Here we count
how often each pixel-sized interval of the dynamical (=ver-
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tical) interval is visited during the iterations and we plot
the counting result (normalized to fit on the screen). We
observe a function that describes the probability density
with which each pixel interval is visited. – These demos
explain why the curves that represent attractors do extend
into the chaotic regions.

Finally we remark that the Feigenbaum Tree is related to
the real part of the Mandelbrot set because the Mandelbrot
set also parametrizes quadratic maps z → fc(z) := (z2−c)
according to their dynamical properties. If c is chosen
from the big bottom apple then fc has an attractive fixed
point. As one passes on the real axis from the apple to
the disk above it, the fixed point changes from attractive
through indifferent to unstable and the orbit of period 2
becomes attractive. As one moves (always along the real
axis) towards the top of the Mandelbrot set one continues
to meet exactly the same kind of dynamical behavior as
one sees in the Feigenbaum Tree. For more details see the
documentation for Julia Set of z → (z2 − c).

H.K.
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User Defined Feigenbaum Iteration*

Please see first: About The Feigenbaum Tree

The question “How can one find periodic attractors of, say,
a family of Newton Iterations?” led to the development
of this exhibit. The user can input an iteration function
that depends on one parameter aa (which is, as in the
Feigenbaum case, represented horizontally). The dyna-
mical space consists of some interval of arguments y of
the function. We can view them as starting values of the
iteration. The default iteration in 3DXM is the Newton it-
eration for the zeros of the polynomial y → (y2−3)2+3aa.

The Feigenbaum picture is ideally suited to watch how
the aa-family of iterations behaves: One quickly spots at-
tractive fixed points or attractive orbits with small period;
but one also observes the density curves in a seemingly
chaotic region. If one expands the scale, i.e. stretches a
very small aa-interval over the whole screen, then one sees
easily whether there are in this interval periodic attractors,
or whether still only chaos is visible (then choose a different
aa-interval or expand the current interval further).

The remaining details are the same as for the classical
Feigenbaum Tree and are explained in detail in the docu-
mentation for that exhibit.
H.K.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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The Area Preserving Henon Twist Map*

User Defined Example
The User Defined entry is designed to study the behaviour
of 2-dimensional maps under forward iteration near an iso-
lated, neutral fixed point. (We want a fixed point inside
the window since otherwise most of the iterated points will
move out of sight.) Our example is Henon’s quadratic, area
preserving twist map F :

F (x, y) :=
µ

cos(aa) · x− sin(aa) · (y − ebb · x|x|)
sin(aa) · x + cos(aa) · (y − ebb · x|x|)

∂
.

Henon used x2 instead of x|x| for the perturbation term.
See below.

The main parameter aa controls the derivative of F at the
fixed point (0, 0); dF |(0,0) is the rotation matrix with angle
aa. The behaviour of the iterations changes strongly with
aa. Try also −aa. F is area preserving since the Jacobian
determinant det(dF ) = 1 everywhere.

By default ebb = 1. This parameter serves to choose the
size of the neighborhood of the fixed point, because of the
scaling property

F (~x; ebb) = e−bb · F (ebb · ~x; 1).
We use exp(bb) instead of bb, because the scaling parameter
is a multiplicative rather than an additive parameter.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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The iteration is applied to the segment [0, 1] · (cc, dd). The
number of points on this segment is tResolution. The de-
fault number of iterations is ee = 2000. The next 2000
iterations are obtained from the Action Menu Entry: Con-
tinue Curve Iteration.
Since the graphic rendering is much slower than the the
computation of iterations one can increase the parameter
hh from its default value hh = 1 and then only one out
of hh iterations is shown on the screen. This is useful if
one needs to see the result of a large number of iterations.
(For example hh = 4 · n in the case aa = π/2.)

The Action Menu Entry Iterate Mouse Point Forward
allows to iterate a single point. During the selection the
point coordinates appear on the screen. If DELETE is
pressed during the iteration then the waiting time at each
step is cancelled so that the point races through its orbit.

The Action Menu Entry Choose Iteration Segment By
Mouse allows to Mouse-select initial and final point of a
segment on which ff points will be distributed and iterated
(by default ff = 16). The parameter hh speeds up the
iteration as above. After the first ee iterations an Action
Menu Entry is activated and allows to iterate further.

As ususal one can translate the image by dragging or one
can scale it by depressing SHIFT and dragging vertically.
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One can also morph the images. They change rather drasti-
cally with aa. As default morph bb is decreased so that the
neighborhood of the fixed point gets expanded. One ob-
serves that most of the iterated points travel on invariant
curves around the fixed point. Occasional periodic points
clearly show up in the image. If aa is an irrational multiple
of π then the visible periods do increase as the neighbor-
hood of the fixed point expands with decreasing bb. (For
the default morph the number ee of iterations is restricted
to 500 to reduce waiting times.)

The Henon twist map can be written as a rotation plus a
quadratic perturbation:

F (x, y) :=
µ

cos(aa) − sin(aa)
sin(aa) + cos(aa)

∂
·
µ

x

y

∂
+ perturb,

perturb := ebb · x|x| ·
µ

+sin(aa)
− cos(aa)

∂
.

The scalar product between the perturbation and the tan-
gent to the rotation circles is the

Forward Perturbation =

−ebb|x|3 · (sin2(aa) + cos2(aa)).

This explains why we changed the Henon map. Our neg-
ative forward perturbation means that the images under
F stay behind the rotation image, and more so the larger
|x|. This is the usual behavior of a monotone twist map.
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Henon’s perturbation has the factor x3 instead of |x|3, so
that the twist in the left half plane partially cancels the
twist in the right half plane. In our definition do the el-
liptical islands around periodic points appear more easily,
while with Henon’s definition the behaviour near the fixed
point, in the case when aa is a rational multiple of π (e.g.
aa = π/2), is much more complicated.

We recommend that users try out also Henon’s definition
and definitions of their own.

H.K.
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The Mandelbrot Set And Its Julia Sets*

If one wants to study iterations of functions or mappings,
f◦n = f ◦ . . . ◦ f , as n becomes arbitrarily large then Julia
sets are an important tool. They show up as the bound-
aries of those sets of points p whose iteration sequences
f◦n(p) converge to a selected fixed point pf = f(pf ). One
of the best studied cases is the study of iterations in the
complex plane given by the family of quadratic maps

z → fc(z) := z2 − c.

The Mandelbrot set will be defined as a set of parameter
values c. It provides us with some classification of the
different ‘dynamical’ behaviour of the functions fc in the
following sense: If one chooses a c-value from some specific
part of the Mandelbrot set then one can predict rather well
how the iteration sequences zn+1 := fc(zn) behave.

1) Infinity is always an attractor. Or, more pre-
cisely, for each parameter value c we can define a Radius
Rc ≥ 1 such that for |z| > Rc the iteration sequences
f◦n(z) converge to infinity. Proof: The triangle inequality
shows that |fc(z)| ≥ |z|2 − |c| and then |fc(z)| > |z| is cer-
tainly true if |z2| − |c| > |z|. Therefore it is sufficient to

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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define Rc := 1/2 +
p

1/4 + |c|, which is the positive solu-
tion of R2 −R− |c| = 0.
This implies: if we start the iteration with z1 > Rc then
the absolute values |zn| increase monotonically—and in-
deed faster and faster to infinity. Moreover, any starting
value z1 whose iteration sequence converges to infinity will
end up after finitely many iterations in this neighborhood
of infinity, U1 := {z ∈ C | |z| > Rc}. The set of all points
whose iteration sequence converges to infinity is therefore
an open set, called the attractor basin A1(c) of infinity.
2) Definition of the Julia set Jc. On the other hand,
the attractor basin of infinity is never all of C, since fc

has fixed points zf = 1/2 ±
p

1/4 + c (and also points of
period n, that satisfy a polynomial equation of degree 2n,
namely f◦n(z) = z).

Definition. The nonempty, compact boundary of the at-
tractor basin of infinity is called the Julia set of fc,

Jc := @A1(c).

Example. If c = 0 then the exterior of the unit circle is the
attractor basin of infinity, its boundary, the unit circle, is
the Julia set J0. The open unit disk is the attractor basin
of the fixed point 0 of fc. The other fixed point 1 lies on
the Julia set; 1 is an expanding fixed point since f 0c(1) = 2;
its iterated preimages −1,±i, . . . all lie on the Julia set.
Qualitatively this picture persists for parameter values c
near 0 because the smaller fixed point remains attractive.
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However, the Julia set immediately stops being a smooth
curve—it becomes a continuous curve that oscillates so
wildly that no segment of it has finite length. Its im-
age is one of those sets called a fractal for which a frac-
tional dimension between 1 and 2 can be defined. Our
rainbow coloration is intended to show Jc as a continu-
ously parametrized curve. We next take a more carefull
look at attractive fixed points.
3) c-values for which one fixed point of fc is attrac-
tive.
There is a simple criterion for this: if the derivative at
the fixed point satisfies |f 0c(zf )| = |2zf | < 1 then zf is
a linearly attractive fixed point; if |2zf | > 1 then zf is
an expanding fixed point; if the derivative has absolute
value 1 then no general statement is true (but interesting
phenomena occur for special values of the derivative).
Since the sum of the two fixed points is 1, the derivative
f 0c can have absolute value < 1 at most at one of them.
Let wc be that square root of 1 + 4c having a positive
real part. Then |1 − wc| is the smaller of the absolute
values (of the derivatives of fc at the fixed points). The
set of parameter values c with a (linearly) attractive fixed
point of fc is therefore the set {c | |1 − wc| < 1}, or
{c = (w2 − 1)/4 | |1 − w| < 1}. In other words, the
numbers 1 + 4c are the squares of numbers w that lie in
a disk of radius one with 0 on its boundary. The apple
shaped boundary is therefore the square of a circle through
0. It is called a cardioid.
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4) The definition of the Mandelbrot set in the pa-
rameter plane.
The behavior of the iteration sequence zn+1 := fc(zn) in
the z-plane depends strongly on the value of the parameter
c. It turns out that for those c satisfying |c| > Rc, the
set of points z whose iteration sequences do not converge
to infinity has area = 0. Such points are too rare to be
found by trial and error, but one can still compute many
as iterated preimages of an unstable fixed point. It follows
from |c| > Rc that only the points of the Julia set Jc do not
converge to infinity. Moreover, the Julia set is no longer a
curve, but is a totally disconnected set: no two points of
the Julia set can be joined by a curve inside the Julia set.
(In this case our coloration of Jc has no significance.)
The Mandelbrot set is defined by the opposite behaviour
of the Julia sets:
Mandelbrot Set : M := {c | Jc is a connected set}
There is an 80 year old theorem by Julia or Fatou that
says:

M = {c ; f◦nc (0) stays bounded}
= {c ; |f◦nc (0)| < Rc for all n}.

This provides us with an algorithm for determining the
complement of M; namely c 6∈ M if and only if the itera-
tion sequence {f◦nc (0)} reaches an absolute value > Rc for
some positive integer n. (But, the closer c is to M, the
larger this termination number n becomes).
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On the other hand, if fc has an attractive fixed point, then
it is also known that {f◦nc (0)} converges towards that fixed
point. The interior of the cardioid described above is there-
fore part of the Mandelbrot set, and in fact it is a large
part of it.
As experiments we suggest to choose c-values from the
apple-shaped belly of the Mandelbrot set and observe how
the Julia sets deform as c varies from 0 to the cardioid
boundary. For an actual animation, choose the deforma-
tion interval with the mouse (Action Menu) and then select
‘Morph’ in the Animation Menu. To see how the deriva-
tive at the fixed point controls the iteration near the fixed
point, choose ‘Iterate Forward’ (Action Menu) and watch
how chosen points converge to the fixed point. This is very
different for c from different parts of the Mandelbrot belly.
5) Attractive periodic orbits. As introduction let us
determine the orbits of period 2, i.e., the fixed points of
fc ◦ fc that are not also fixed points of fc. Observe that:

fc ◦ fc(z)− z = z4 − 2cz2 − z + c2 − c

= (z2 − z − c)(z2 + z − c + 1).

The roots of the first quadratic factor are the fixed points
of fc, the roots of the other quadratic factor are a pair of
points that are not fixed points of fc, but are fixed points
of fc ◦ fc, which means, they are an orbit of period 2,
clearly the only one. Such an orbit is (linearly) attractive
if the product of the derivatives at the points of the orbit
has absolute value < 1. The constant coefficient in the
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quadratic equation is the product of its roots, i.e. the
product of the points of period 2 is 1− c. Therefore:

The set of c-values for which the orbit of period 2 is at-
tractive is the disk {c ; |1− c| < 1/4}.
Again, this disk is part of the Mandelbrot set since {f◦nc (0)}
has the two points of period 2 as its only limit points.
The interior of the Mandelbrot set has only two compo-
nents that are explicitly computable. These are the c-
values giving attractive fixed points or attractive orbits of
period 2. For example, the points of period 3 are the zeros
of a polynomial of degree 6, namely:

°
fc ◦ fc ◦ fc(z)− z

¢
/(z2 − z − c)

= z6 + z5 + (1− 3c)z4 + (1− 2c)z3+

+ (1− 3c + 3c2)z2 + (c− 1)2z + 1− c(c− 1)2.

But since this polynomial cannot be factored (with c a pa-
rameter) into two polynomials of degree 3 it does not pro-
vide us with a description of the attractive orbits of period
3. However, it does give those c-values for which the period
3 orbits are superattractive (i.e. (f◦3)0(orbit point) = 0),
since in this case the constant term must vanish. Approx-
imate solutions of 1 − c(c − 1)2 = 0 are c = 1.7549, c =
0.12256 ± 0.74486i. One can navigate the Mandelbrot set
and observe that the complex solutions are between the
two biggest blobs that touch the primary apple from ei-
ther side.

30



Linearly attractive orbits always have c-values which be-
long to open subsets of the Mandelbrot set (in particu-
lar all the blobs touching the two explicit components),
but the closure of these open subsets does not exhaust the
Mandelbrot set. For example for c = i the orbit of 0 is
0 7→ −i 7→ −1 − i 7→ i 7→ −1 − i . . ., i.e., after two pre-
liminary steps it reaches an orbit of period 2. Since this
orbit stays clearly bounded we have i ∈ M (by the cri-
terium quoted before). On the other hand, if the iteration
z 7→ z2 − i had any attractor (besides 1), then the orbit
of 0 would have to converge to the attracting orbit. There-
fore there is no attractor and no attractor basin. In fact,
the complement of the Julia set is the (simply connected)
attractor basin of1. Because of its appearance, this Julia
set is called a dendrite.
To generalize this observation, consider, for any c, the
orbit of 0: 0 7→ −c 7→ c2 − c 7→ c4 − 2c3 + c2 − c 7→
(c4 − 2c3 + c2 − c)2 − c 7→ . . .. If 0 is on a periodic orbit
for some c, then this orbit is superattractive. If the peri-
odicity starts later then this periodic orbit may not be an
attractor even though the orbit of 0 reaches it in finitely
many steps. For example c2 − c is periodic of period 3, if
c3 · (c − 2) · (c3 − 2c2 + c − 1)2 · (c6 − 2c5 + 2c4 − 2c3 +
c2 + 1) = 0; c = 2 is the largest point on the Mandel-
brot set, the third factor has as roots the three c-values
(mentioned before) for which the iteration has superat-
tractive orbits of period 3. The last factor has the root
c = 1.239225555 + 0.4126021816 · i, its Julia set is another

31



dendrite. A third dendrite is obtained, for example, if the
4th point c4− 2c3 + c2− c in the orbit of 0 is a fixed point,
which is the case if c4(c− 2)(c3 − 2c2 + 2c2 − 2) = 0; here
the last factor has the numerical solutions c = 1.543689
and c = 0.2281555 ± 1.1151425 · i.
6) Suggestions for experiments. The final entry in
the Action Menu for the Julia set fractal is a hierachi-
cal menu with five submenus, each of which lists a num-
ber of related c-values that you may select. The c-values
in these menus were selected because they typify either
some special topological property of the associated Julia
set or some dynamical property of the iteration dynamics
of z 7→ z2 − c, and these properties are referenced by spe-
cial abbreviations added to the menu item. (In addition
some menu items also list a “name” that is in common use
to refer to the Julia set, usually deriving from its shape).
For convenience we will list in the next couple of pages all
the items from these five menus, but first we explain the
abbreviations used to describe them.

Abbreviations used in the following lists of interesting C-
values. ‘FP’ means ‘fixed point’, the corresponding c-
values are from the belly of the Mandelbrot set. ‘cyc k’
means ‘cyclic of period k’, the corresponding c-values are
from the blobs directly attached to the belly; its Julia sets
have a fixed point which is a common boundary point of k
components of the attractor basin and the attractive orbit
wanders cyclicly through these k components. ‘per 2 · 3’
means: this c-value has an attractor of period 6 and the
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c-value is from a blob which is attached to the disk in M
(which gives the attractive orbits of period 2). By contrast,
‘per 3 · 2’ means that the c-value is from the biggest blob
which is attached to a period-3 blob (attached to the belly);
its attractor has also period 6, but the open sets through
which the attractive orbit travels are arranged quite differ-
ently in the two cases. One should compare both of them
with the cyclic attractors of period 2 resp. 3. The abbrevi-
ation ‘tch 1-2’ means that the c-value is in the Mandelbrot
set a common boundary point between the belly (i.e. the
component of attractive fixed points) and the component
of attractors of period 2. For the ‘Siegel disks’ see Nr. 8
of this ATO first; the column entry in the list gives the
rotation number of the derivative (of the iteration map)
at the fixed point. In the dendrite section of the list we
mean by ‘ev per 2’ that the orbit of 0 is ‘eventually periodic
with period 2’, as explained in Nr5 of this ATO. Finally, if
c 6∈ M then the Julia set is a totally disconnected Cantor
set and there are no such easy distinctions between differ-
ent kinds of behaviour of the iteration on the Julia set (all
other points are iterated to 1).
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Interesting C-values From the Action Submenus
Attractors Menu

C - values Popular Name Behaviour

0.0 + 0.0 · i Circle FP

0.0 + 0.1 · i Rough Circle FP

0.127 + 0.6435 · i Near-Rabbit FP

-0.353 - 0.1025 · i Near-Dragon FP

0.7455 + 0.0 · i Near San Marco FP

1.0 + 0.0 · i cyc 2

1.0 + 0.2 · i cyc 2

0.1227 + 0.7545 · i Rabbit cyc 3

1.756 + 0.0 · i Airplane cyc 3

-0.2818 + 0.5341 · i cyc 4

1.3136 + 0.0 · i per 2·2
-0.3795 + 0.3386 · i cyc 5

0.5045 + 0.5659 · i cyc 5

-0.3909 + 0.2159 · i cyc 6

0.1136 + 0.8636 · i per 3·2
1.1409 + 0.2409 · i Rabbit’s Shadow per 2·3
-0.3773 + 0.1455 · i cyc 7

-0.1205 + 0.6114 · i cyc 7

-0.36 - 0.1 · i Dragon cyc 8

0.3614 + 0.6182 · i cyc 8

-0.3273 + 0.5659 · i per 4·2
1.0 + 0.2659 · i per 2·4

1.3795 + 0.0 · i per 2·2·2
0.0318 + 0.7932 · i Rabbit Triplets per 3·3
-0.0500 + 0.6318 · i cyc 10

-0.4068 + 0.3409 · i per 5·2
0.5341 + 0.6023 · i per 5·2
0.9205 + 0.2477 · i per 2·5
1.2114 + 0.1545 · i per 2·5
0.6977 + 0.2818 · i cyc 11

0.4864 + 0.6023 · i Quintuple Rabbits per 5·3
0.65842566307252 - 0.44980525145595 · i Super Attractor per 21
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Interesting C-values From the Action Submenus.

C - values Popular Name Behaviour

Between Attractors Menu:
0.75 + 0.0 · i San Marco tch 1-2

1.25 + 0.0 · i S.Marco’s Shadow tch 2-2·2
0.125 + 0.64952 · i Balloon Rabbit tch 1-3

-0.35676 + 0.32858 · i tch 1-5

Siegel Disks Menu:
0.390540870218 + 0.586787907347 · i 2π · i· gold

-0.08142637539 + 0.61027336571 · i 2π · i/
√

2
0.66973645476 - 0.316746426417 · i 2π · i/

√
5

One Simply Connected Open Component Menu:
0.0 + 1.0 · i Dendrite ev per 2

0.2281554936539 + 1.1151425080399 · i Dendrite FP after 3

1.2392255553895 - 0.4126021816020 · i Dendrite ev per 3

-0.4245127190500 - 0.2075302281667 · i FP after 7

1.1623415998840 + 0.2923689338965 · i per 2 after 7

Outside Mandelbrot set Menu:
0.765 + 0.12 · i Cantor set

-0.4 - 0.25 · i Cantor set

-0.4253 - 0.2078 · i Cantor set
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An experiment which one should always make after one has
computed a Julia set for some c from the Mandelbrot set:
Remember from which part of M c came and then ‘Iterate
Forward’ (Action Menu) mouse selected points until they
visually converge to a periodic attractor. Observe how
the shape of the Julia set lets one guess the period of its
attractor and how this relates to the position of c in M.
7) Computation of the Julia set. In addition to the
attractor at infinity there is at most one further attractor in
the z → (z2 − c) systems. All preimages of non-attractive
fixed points or non-attractive periodic orbits are points
on the Julia set. Since |f 0c| > 1 along the Julia set (with
some exceptions), the preimage computation is numerically
stable. This is a common method for computing Julia
sets.
In our program we compute preimages starting from the
circle {z; |z| = Rc} around the wanted Julia set. Under
inverse images these curves converge from outside to the
Julia set. Such an approximation by curves allows us to
color the Julia set in a continuous way and thus emphasize
that, despite its wild looks it is the image of a continuous
curve—at least for c ∈ M , otherwise we recall that the
Julia set is totally disconnected, so in particular is not the
image of a curve. Our computation works also for c 6∈M,
since our ‘curves’ of course consist of only finitely many
points, and the inverse images of each of these points have
their limit points on the Julia set.
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8) Self-similarity of a Julia set. A well advertised prop-
erty of these Julia sets is their so called ‘self-similarity’.
By this one means: Take a small piece of the Julia set
and enlarge it; the result looks very much like a larger
piece of that same Julia set. For the Julia sets of the
present quadratic iterations, this self-similarity is easily
understood from the definitions: The iteration map fc is a
conformal map that stretches its Julia set 1:2 onto itsself.
In other words, the iteration map itself maps any small
piece of its Julia set to roughly twice as large a piece, and
it does so in an angle preserving way. From this point of
view self-similarity should come as no surprise.
9) Siegel Disks. We next would like to explain an ex-
perimentally observable phenomenon that mathematicians
find truly surprising, but this needs a little preparation.
Simplifying Mappings. Imagine that we want to describe
something on the surface of the earth, for example a walk.
For a long time, people have been more comfortable giv-
ing the description on a map of the earth rather than on
the earth itself. Mathematicians view a map of the earth
more precisely as a mapping F from the earth to a piece
of paper and they describe (or even prove) properties of
the map by properties of the mapping F . An example of
a useful property is ‘conformality’: angles between curves
on the earth are the same as the angles between the cor-
responding curves on the map.
Conjugation by simplifying mappings. Let us consider one
of the above iteration maps fc and assume that it has an at-
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tractive fixed point zf with derivative q := f 0c(zf ), |q| < 1.
The simplest map with the same derivative is the linear
map L(z) := q · z. It is the definition of derivative that
the behaviour of fc near the fixed point looks ‘almost’
like the behaviour of L near its fixed point 0, and ‘al-
most’ means: the smaller the neighborhoods of the fixed
points (on which the maps are compared) the more the
maps look alike. But more is true for fc because of the
assumption |q| < 1, we have the theorem: There exists
on a fixed(!) neighborhood of the fixed point zf a simpli-
fying map F to a neighborhood of 0 ∈ C that makes fc

look exactly like its linear approximation L, by which we
mean: fc = F−1 ◦ L ◦ F . In particular, this tells us every-
thing about the iterations of fc in terms of the iterations
of L because they also look the same when compared using
(‘conjugation’ by) F : f◦nc = F−1 ◦ L◦n ◦ F .
Siegel’s Theorem. The previous result cannot be true in
general if |q| = 1. For example if q = exp(2πi/k), then
L◦k = id, but f◦kc =/ id. Therefore they cannot look alike
under a simplifying (i.e., ‘conjugating’) mapping F . But if
z → q · z is an irrational rotation and if some further con-
dition is satisfied, for example if q := exp(2πi/

√
2), then

there is again such a simplifying mapping F such that fc

looks near that fixed point exactly like its linearization,
namely: fc = F−1 ◦ L ◦ F .
Experiment. While Siegel’s proof insures only very small
neighborhoods on which the simplifying mapping F exists,
these neighborhoods are surprisingly large in the present
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case. One can ‘observe’ Siegel’s theorem by first choos-
ing c = ((1 − q)2 − 1)/4 such that f 0c(zf ) = q with q =
exp(2πi ·k/

√
p), p prime (or square free), then one chooses

points on a fairly straight radial curve from the fixed point
almost out to the Julia set. Under repeated iterations these
points travel on closed curves around the fixed point (’cir-
cles’ when viewed with F ) and all of them travel with the
same angular velocity, i.e., one observes that they remain
on non-intersecting radial curves.
H.K.
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