
About Pseudospherical Surfaces

If X : M ⊂ R3 is a surface with Gaussian curvature
K = −1, then it is known that there exists a local
asymptotic coordinate system (x, t) on M such that
the first and second fundamental forms are

I = dx2 + dt2 + 2 cos q dx dt, II = 2 sin q dx dt,

where q is the angle between asymptotic lines (the
x-curves and t-curves). Such coordinates are called
Tchebyshef coordinates. The Gauss-Codazzi equa-
tions for M in these coordinates become a single equa-
tion, the sine-Gordon equation (SGE)

qxt = sin q. (SGE)

Surfaces in R3 having constant Gauusian curvature
K equal minus one are usually called pseudospheri-
cal surfaces (after the most well-known example, the
pseudosphere) and the so-called Fundamental Theo-
rem of Surfaces gives us a local correspondence be-
tween pseudospherical surfaces (up to rigid motion)



and solutions of SGE. A general pseudospherical sur-
face shares with the pseudosphere the fact that its in-
trinsic geometry is the hyperbolic geometry of Lobachevsky
Now classical results of Bäcklund and of Bianchi con-
cerning pseudospherical surfaces provide methods to
find many explicit solutions of the SGE and construct
the corresponding pseudospherical surfaces. In fact,
the SGE is one of the model soliton equations, and
these classical method give rise to all of the soliton
solutions of SGE. We will describe next a little of this
very classical differential geometry.
Let M, M∗ be surfaces in R3. A diffeomorphism � :
M → M∗ is called a pseudospherical congruence with
constant θ if:
(i) the line joining p and p∗ = �(p) is tangent to

both M and M∗,
(ii) the angle between the normal of M at p and the

normal of M∗ at p∗ = �(p) is θ, and
(iii) the distance from p to p∗ is sin θ for all p ∈ M .
The following result of Bäcklund is fundamental to
the study of pseudospherical surfaces.

Bäcklund Theorem. Let M, M∗ be two surfaces in



R3, and � : M → M∗ a pseudospherical congruence
with constant θ. Then

(a) both M and M∗ are pseudospherical surfaces,

(b) the Tchebyshef coordinates x, t on M maps to
the Tchebyshef coordinates on M∗ under �,

(c) if q and q∗ are the solutions of SGE correspond-
ing to M and M∗ respectively, then q, q∗ satisfies{

q∗x = qx + 4s sin( q∗+q
2 ),

q∗t = −qt + 2
s sin( q∗−q

2 ),
(BTθ)

where s = tan θ
2 .

Moreover, given q, system (BTθ) is solvable for q∗ if
and only if q is a solution of the SGE, and the solution
q∗ is again a solution of the SGE.

We will call both � and the transform from q to
q∗ a Bäcklund transformation. This description of
Bäcklund transformations gives us an algorithm for
generating families of solutions of the PDE by solving
a pair of ordinary differential equations. The proce-
dure can be repeated, but the miracle is that after
the first step, the procedure can be carried out alge-
braically. This is the Bianchi Permutability Theorem.



Given two pseudospherical congruences �i : M0 → Mi

with angles θi respectively and sin θ2
1 �= sin θ2

2, then
there exist an algebraic construction of a unique sur-
face M3, and pseudospherical congruences �̃1 : M2 →
M3 and �̃2 : M1 → M3 with angles θ1 and θ2 re-
spectively such that �̃2�1 = �̃1�2. The analytic refor-
mulation of this theorem is the following: Suppose q
is a solution of the SGE and q1, q2 are two solutions
of system (BTθ) with angles θ = θ1, θ2 respectively.
The Bianchi permutability theorem gives a third local
solution q3 to the SGE

tan
q3 − q

4
=

s1 + s2

s1 − s2
tan

q1 − q2

4
,

where s1 = tan θi

2 and s2 = tan θ2
2 .

To see how the scheme works, we start with the
trivial solution q = 0 of SGE, then (BTθ) can be
solved explicitly to get

q∗(x, t) = 4 tan−1(esx+ t
s ), (1)

the 1-soliton solutions of SGE. (Here s = tan θ
2 . ) An

application of the Permutability theorem then give



the 2-soliton solutions

q(x, t) = 4 tan−1

(
s1 + s2

s1 − s2

es1x+ 1
s1

t − es2x+ 1
s2

t

1 + e(s1+s2)x+( 1
s1

+ 1
s2

)t

)
.

(2)
Repeated applications of the Permutability theorem
give complicated but nevertheless explicit n-soliton
solutions. Note that the parameters s1, s2 in the
above formula for 2-solitons are real. But for s1 = eiθ

and s2 = −e−iθ, even though q1, q2 are not real-
valued, nevertheless

q3(x, t) = 4 tan−1

(
sin θ sin(T cos θ)

cos θ cosh(X sin θ)

)
(3)

is real and a solution of SGE, where X = x − t, and
T = x + t are space-time coordinates. This solution
is periodic in T and is called a Breather .
The “surface” corresponding to q = 0 is degenerate
and in fact is a straight line. The surfaces correspond-
ing to
(i) 1-soliton ( formula (1)) with s = 1 is the Pseu-

dosphere,
(ii) 1-soliton (formula (1)) with s �= 1 is a Dini Sur-

face,



(iii) 2-soliton (formula (2)) contains the Kuen Sur-
face.

(iv) Breather solution (formula (3)) with cos θ a ra-
tional number is a pseudospherical surface peri-
odic in the T direction.

Even though the breather solution q is periodic in T ,
the corresponding pseudospherical surface may not
be periodic in T . This is because when we use the
Fundamental Theorem of Surfaces to construct the
surface from solution q of the SGE, we need to solve
two compatible ODEs whose coefficients are given by
functions of q and qx. For Breathers, the solutions of
these ODEs are periodic in T if cos θ is rational.
You will notice that all of the pseudospherical sur-
faces shown in the program have obvious singulari-
ties. In fact, a theorem of Hilbert says that the hy-
perbolic plane can not be isometrically immersed in
R3, and this implies that all complete pseudospher-
ical surfaces must have singularities. Although soli-
ton solutions are smooth on the entire (x, t)-plane,
the corresponding pseudospherical surfaces have sin-
gularities where the induced metric becomes degen-



erate, i.e., where

det
(

1 cos q
cos q 1

)
= 0.

In other words, a surface corresponding to a global
solution q of SGE will have a singularities along the
curves where q is a multiple of π. Moreover, since
the metric has rank 1 there, these surfaces have cusp
singularities.

For an elementary and short introduction to soliton
theory and its relation to SGE, see the article by C. L.
Terng and K. Uhlenbeck: Geometry of Solitons, No-
tices of AMS, 47(2000), 17-25. One may also down-
load the pdf file of this paper from
http://www.math.neu.edu/∼terng/MyPapers.html
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