
Complex Functions Or Conformal Maps

in 3D-XplorMath, a Visualization Program

Elementary Functions

1.) Complex Square z 7→ z2

2.) Complex Exponential z 7→ exp(z)
3.) Complex Invers z 7→ 1/z
4.) Confocal Ellipses from z 7→ z + 1/z
5.) Rolling Curves from Polynomials z 7→ zee + ee · z
6.) Fractional Linear Maps z 7→ (a · z + b)/(c · z + d)
7.) Hyperbolic Translations z 7→ (z+cc)

(1+cc·z)

8.) Nonconformal Complex Map z 7→ conj(z) + aa · z2

9.) Complex Square Root
p

(z2) = ±z
10.) Complex Logarithm log(exp(z)) = z + 2πi · Z
11.) Complex Sine sin(z) = (exp(iz)− exp(−iz))/2i
12.) Complex Tangent Hyperbolicus

Elliptic Functions

13.) Symmetries Of Elliptic Functions
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Complex Square z → z2 *

We use the parameter dependent mapping z 7→ aa(z −
bb)ee + cc, with the default values aa = 1, bb = 0, cc = 0,
and ee = 2. The default Morph joins z2 to the identity,
varying ee ∈ [1, 2].
Look at the discussion in “About this Category” for what
to look at, what to expect, and what to do.
Just as the appearance of the graph of a real-valued func-
tion x 7→ f(x) is dominated by the critical points of f ,
it is an important fact that so also, for a conformal map,
z 7→ f(z), the overall appearance of an image grid is very
much dominated by those points z where the derivative f 0

vanishes. Most obviously, near points a with f 0(a) = 0 the
grid meshes get very small and, as a consequence, the grid
lines usually are strongly curved. If one looks more closely
then one notices that the angle between curves through
a is not the same as the angle between the image curves
through f(a) (recall: f 0(a) = 0). We will find this general
description applicable to many examples.
One should first look at the behaviour of the simple quadra-
tic function z → z2 near z = 0, both in Cartesian and
in Polar coordinates. One sees that a rectangle, which
touches z = 0 from one side is folded around 0 with strongly
curved parameter lines, and one also sees in Polar coordi-

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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nates that the angle between rays from 0 gets doubled.
The image grid in the Cartesian case consists of two fami-
lies of orthogonal intersecting parabolas.
One should return to this prototype picture after one has
seen others like z → z + 1/z, z → z2 + 2z and even the
Elliptic functions and looked at the behaviour near their
critical points.
The first examples to look at, (using Cartesian and Polar
Grids) are z → z2, z → 1/z, z →

√
z, z → ez.

H.K.
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The Complex Exponential Map z 7→ ez *

Our example is z 7→ exp(aa(z − bb)) + cc, its parameters
are set to aa = 1, bb = 0, cc = 0; aa gets morphed in C.
See the functions z 7→ z2, z 7→ 1/z and their ATOs first.
The complex exponential function z 7→ ez is one of the
most marvellous functions around. It shares with the real
function x 7→ exp(x) the differential equation exp0 = exp
and the functional equation exp(z + w) = exp(z) · exp(w).
This latter identity implies that one can understand the
complex Exponential in terms of real functions, for if we
put z = x + i · y then we have

exp(x + i · y) = exp(x) · exp(i · y) =
exp(x) · cos(y) + i · exp(x) · sin(y).

This says that a Cartesian Grid is mapped “conformally”
(i.e., preserving angles) to a Polar Grid: the parallels to the
real axis are mapped to radial lines, and segments of length
2π that are parallel to the imaginary axis are mapped to
circles around 0. This function is therefore used to make,
in the Action Menu, the Conformal Polar Grid. Observe
how justified it is to describe the image grid as “made out
of curved small squares”.
If you have seen z 7→ ez and z 7→ z +1/z then now look at
z 7→ sin(z).
H.K.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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The Complex Map z 7→ 1/z *

The actual mapping for this example is z 7→ aa/(z−bb)+cc,
with the default values aa = 1, bb = 0, and cc = 0.
Look at the function z 7→ z2 and its ATO first.
The function z 7→ 1/z should be looked at both in Carte-
sian and Polar Grids. The default Morph varies bb ∈ [0, 1].
Notice first:
1) The real axis, imaginary axis and unit circle are mapped

into themselves,
2) the upper half plane and the lower half plane are in-

terchanged, and
3) the inside of the unit circle and its outside are also

interchanged.
This is best seen in the (default) Conformal Polar Grid. In
the Cartesian Grid one should in particular observe that
all straight parameter lines (in the domain) are mapped to
circles (some exceptions, like the real axis, remain lines).
The behaviour of these circles near zero can be looked at
as an image of the behaviour of the standard Cartesian
Grid near infinity. In fact all circles are mapped to circles
or lines.
Examples to look at after this are
z 7→ (az + b)/(cz + d) and z 7→ (z + cc)/(1 + c̄cz),

* This file is from the 3D-XplorMath project. Please see:
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both of which can be obtained from z → 1/z by composi-
tion with translations z → z+a or scaled rotations z → a·z.
Therefore all of these so-called “Möbius transformations”
map circles and lines to circles and lines.
H.K.
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Complex Map z 7→ z + aa/z *

See the functions z → z2, z → 1/z, z → z2 + 2z, z → ez

and their ATOs first. Use the default Morph, aa ∈ [0, 1].
This function is best applied to a Conformal Polar Grid.
The image of the outside of the unit circle is the same as
the image of the inside of the unit circle, namely the full
plane minus the segment [−2, 2]. The unit circle is mapped
to this intervall, each interior point w = 2 ·cos(φ) ∈ [−2, 2]
appears twice as image point, namely of z = exp(±iφ).
The default choice shows how the outside of the unit disk
is mapped to the outside of the interval [−2, 2]. If we note
that f 0(±1) = 0 then we understand this behaviour: the
interior 180◦ angle at these critical points ±1 of the outside
domain is again doubled to become the angle of the image
domain (outside [−2, 2]) at ±2.
A domain circle zR(φ) = R exp(iφ) is mapped to the image
ellipse (R+1/R) cos(φ)+ i(R−1/R) sin(φ), and a domain
radius zφ(R) = R exp(iφ) is mapped to the Hyperbola (R+
1/R) cos(φ) + i(R− 1/R) sin(φ). The image grid therefore
consists of a family of ellipses that intersect orthogonally a
family of hyperbolae, and all these Conic Sections (see the
Plane Curves Category) are “confocal”, i.e., they have the
same Focal Points, namely at +2 and −2.
H.K.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/

7



Complex Map z 7→ aa · zee + ee · z *

(Default: z → z2 + 2z)
Look at the functions z → z2, z → 1/z and their ATOs
first. The default Morph varies aa ∈ [0, 1.2] for ee = 4.

Of course, since z2 + 2z + 1 = (z + 1)2, this function is
not very different from the first example z → z2. But
the change puts the critical point to −1 on the unit circle
(f 0(−1) = 0). Therefore, if one looks what this map does
to a Polar Grid, one can study the behaviour near the
critical point z = −1 with a different grid picture than
in the first example. Circles outside the unit circle are
mapped to Limaçons (Plane Curves Category) which wind
around −1 twice. The unit circle is mapped to a Cardioid
and one can see the interior angle of 180◦ of the unit circle
at −1 mapped to the interior angle of 360◦ of the Cardioid
at −1. Also one can see that a neigbourhood of −1 is
strongly contracted by this function.
See the function z → z + 1/z next.
H.K.

* This file is from the 3D-XplorMath project. Please see:
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Fractional Linear Maps*

or Möbius Transformations
z 7→ (a · z + b)/(c · z + d)

See the functions z 7→ z2, z → 1/z and their ATOs first.
The default Morph uses a conformal polar grid and varies
a ∈ [1, 2], c ∈ [0, 1].
These functions are called or fractional linear maps or
Möbius transformations. They differ from the map
z 7→ 1/z by composition with a translation z 7→ z + a
or scaled rotations z 7→ a · z. As discussed for z 7→ 1/z
they transform lines and circles to lines and circles.
The default special case is z 7→ (z − 1)/(z + 1). It is best
understood in the (default) Conformal Polar Grid. Since
it maps 0 to −1 and 1 to +1, one can see the Polar co-
ordinate centers moved from 0,1 to −1,+1. This picture
is the first step towards understanding the complex (or
“Gaussian”) plane plus the point at infinity as the “Rie-
mann Sphere”.
See also the other Möbius transformations from the Con-
formal Maps menu.
H.K.

* This file is from the 3D-XplorMath project. Please see:
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The Möbius Transformation*

z → (z + cc)
(1 + cc · z)

of the unit disk.

Look at the Möbius transformation z → (a·z+b)
(c·z+d) and its

ATO first. The default Morph varies cc ∈ [−0.9, 0.9].

This function maps the interior of the unit disk bijectively
to itself, for every choice of cc with |cc| < 1. The behaviour
outside of the unit disk is obtained by reflection in the unit
circle, i.e., z → 1/z̄.

These maps have an interesting geometric interpretation:
they are isometries for the “hyperbolic metric” on the unit
disk. To understand this further, imagine that the unit
disk is a map of this two-dimensional hyperbolic world
and that the scale of this map is not a constant but equals
1/(1 − zz̄). This means that we do not obtain the length
of a curve t → z(t) as in the Euclidean plane by the inte-
gral

R
|z0(t)|dt—we have to take the scale into account and

define its hyperbolic length by
R
|z0(t)|/(1 − |z(t)|2)dt. It

is this hyperbolic length of curves that is left invariant by
the “hyperbolic translations” z → (z + cc)/(1 + cc · z).

Locally the Pseudosphere (Category: Surfaces) has the
same hyperbolic geometry.

H.K.

* This file is from the 3D-XplorMath project. Please see:
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Nonconformal Complex Map z 7→ conj(z) + aa · z2 *

Look first at other functions and their ATOs, for example
z → z2 and exp. The default Morph varies aa ∈ [0, 1].
The map z 7→ conj(z) + aa · z2 is a map from the complex
plane to itself. The harmless looking “conj” is responsible
for the fact that this map is not complex differentiable and
therefore not a “conformal” map, that is, a map for which
the angles between any two curves and their images are
the same. It is clearly visible in the image that the squares
of the domain grid are mapped to rectangles and even to
parallelograms in the range.

The image also shows two
“fold lines”. We observe
that interior points of the
domain are mapped so that
they lie on the boundary of
the image. For a complex
differentiable function this
can never happen as is
asserted by the
Open Mapping Theorem.
See the default morph.

H. K.

* This file is from the 3D-XplorMath project. Please see:
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The Complex Map z 7→
√

z *

See the functions z 7→ z2, z 7→ 1/z and their ATOs first.
The map z 7→

√
z should be looked at both in Cartesian

and Polar Grids and in the default morph zee, ee ∈ [12 , 1].
Note that since this function is the inverse of z → z2, we
expect to see related phenomena: circles around 0 go to
circles around 0, radial lines from 0 go to radial lines from
0, but now with half the angle between them (since we
look at the inverse map). A neigbourhood of 0 was very
much contracted by z → z2, now we see the opposite, the
distance of points from zero is increased very much (beyond
any Lipschitz bound).
A more complicated aspect is the fact, since all z =/ 0 have
two distinct square roots differing by a factor of −1, the
function z 7→

√
z is not really a well defined map until we

make some choices.
The function

√
z used by 3D-Filmstrip maps the upper half

plane to the first quadrant, the (strict) lower half plane to
the fourth quadrant, and the negative real axis to the pos-
itive imaginary axis—so there is no continuity from above
to below the negative real axis (which is therefore called a
“branch cut”).
The Cartesian grid lines are mapped to two families of
hyperbolae which intersect each other orthogonally.
H.K.

* This file is from the 3D-XplorMath project. Please see:
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The Complex Logarithm*

z 7→ log z

Look at the function z → ez and its ATO first. The default
Morph shows a · log(z) + (1− a) · z for a ∈ [0, 1].
The complex Logarithm tries to be the inverse function of
the complex Exponential. However, exp is 2πi-periodic, so
such an inverse can only exist as a multivalued function.
From the differential equation exp0 = exp follows that the
derivative of the inverse is not multivalued and in fact very
simple:

log0(z) = 1/z.
Integration of the geometric series

1/z = 1/(1− (1− z)) =
P

k(1− z)k

=
°P

k−(1− z)k+1/(k + 1)
¢0

gives the Taylor expansion around 1 of log. The so called
“principal value” of the complex Logarithm is defined in
the whole plane, but slit along the negative real axis, for
example by integrating the derivative log0(z) = 1/z in that
simply connected domain along any path starting at 1.
Different values of log z differ by integer multiples of 2πi,
e.g. i = exp(πi/2) implies log i = πi/2 + 2πi · Z.
H.K.

* This file is from the 3D-XplorMath project. Please see:
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The Complex Sine z → sin(z) *

Look at the functions z → z2, z → 1/z, z → z2 + 2z,
z → ez and their ATOs first. The default Morph varies the
family fa(z) = a · sin(z) + (1− a) · z for a ∈ [0, 1].
While the behaviour of the one-dimensional real functions
x 7→ exp(x) and x 7→ sin(x) are quite dissimilar (exp is
convex and positive, while sin is periodic and bounded),
as complex functions they are very closely related:

sin(z) =
exp(iz)− exp(−iz)

2i
,

an identity that explains why the image grid under sin of
the default Cartesian grid looks exactly like the image grid
under z → z +1/z applied to a Conformal Polar Grid out-
side the unit circle. For if we put w(z) := exp(iz)/i, then
sin(z) = (w(z) + 1/w(z)))/2, and: recall that exp maps
the standard Cartesian Grid to the Conformal Polar Grid
around 0. The parameter curves in the image grid of sine
are therefore the same orthogonal and confocal ellipses and
hyperbolas as in the image of z 7→ z + 1/z.

H.K.

* This file is from the 3D-XplorMath project. Please see:
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The Complex Tangent Hyperbolicus *

z 7→ tanh(z) = ez−e−z

ez+e−z = −i tan(i z)

See the functions z → z2, z → 1/z, z 7→ (a·z+b)/(c·z+d),
z → ez, z → sin(z), and their ATOs first. The default
Morph varies the parameter a ∈ [0, 1] in the formula

f(z) := tanh(a · z/2) + (1− a) · z/2 .

All real functions that have power series representations
can be extended to be functions over the complex plane.
Of course this includes all functions that have simple defi-
nitions in terms of the exponential map.
Maybe it comes as a surprise that the image net of the
function tanh is the same as that of (z− 1)/(z +1). But if
we abbreviate w = exp(2 z) then we have, very similar to
the case of the sine function, tanh(z) = (w − 1)/(w + 1).
Now recall that we use a conformal polar grid in the do-
main to show (z − 1)/(z + 1) and we use the standard
cartesian grid in the domain to show tanh. The connec-
tion between the two domain grids is given by the complex
exponential map.

H.K.

* This file is from the 3D-XplorMath project. Please see:
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Symmetries Of Elliptic Functions*

[The approach below to elliptic functions follows
that given in section 3 of ”The Genus One Helicoid
and the Minimal Surfaces that led to its Discovery”,
by David Hoffman, Hermann Karcher, and Fusheng
Wei, published in Global Analysis and Modern Math-
ematics, Publish or Perish Press, 1993. For conve-
nience, the full text of section 3 (without diagrams)
has been made an appendix to the chapter on the
Conformal Map Category in the documentation of
3D-XplorMath.]

An elliptic function is a doubly periodic meromorphic func-
tion, F (z), on the complex plane C. The subgroup L of C
consisting of the periods of F (the period lattice) is isomor-
phic to the direct sum of two copies of Z, so that the quo-
tient, T = C/L, is a torus with a conformal structure, i.e.,
a Riemann surface of genus one. Since F is well-defined
on C/L, we may equally well consider it as a meromorphic
function on the Riemann surface T .

It is well-known that the conformal equivalence class of
such a complex torus can be described by a single complex
number. If we choose two generators for L then, without
changing the conformal class of C/L, we can rotate and
scale the lattice so that one generator is the complex num-

* This file is from the 3D-XplorMath project. Please see:
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ber 1, and the other, τ , then determines the conformal class
of T. Moreover, τ1 and τ2 determine the same conformal
class if and only if they are conjugate under SL(2, Z).

The simplest elliptic functions are those defining a degree
two map of T to the Riemann sphere. We will be con-
cerned with four such functions, that we call JD, JE, JF,
and WP. The first three are closely related to the classical
Jacobi elliptic functions, but have normalizations that are
better adapted to certain geometric purposes, and simi-
larly WP is a version of the Weierstrass ℘-function, with
a geometric normalization. Any of these four functions
can be considered as the projection of a branched cover-
ing over the Riemann sphere with total space T , and as
such it has four branch values, i.e., points of the Riemann
sphere where the ramification index is two. For JD there
is a complex number D such that these four branch values
are {D,−D, 1/D,−1/D}. Similarly for JE and JF there
are complex numbers E and F so that the branch values
are {E,−E, 1/E,−1/E} and {F,−F, 1/F,−1/F} respec-
tively, while for WP there is a complex number P such that
the branch values are {P,−1/P, 0,1}. The cross-ratio, ∏,
of these branch values (in proper order) determines τ and
likewise is determined by τ .

The branch values E, F, and P of JE, JF, and WP can be
easily computed from the branch value D of JD (and hence
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from dd) using the following formulas:

E = (D − 1)/(D + 1), F = −i(D − i)/(D + i),

P = i(D2 + 1)/(D2 − 1),

and we will use D as our preferred parameter for describing
the conformal class of T . In 3D-XplorMath, D is related
to the parameter dd (of the Set Parameter... dialog) by
D = exp(dd), i.e., if dd = a + ib, the D = exp(a) exp(ib).
This is convenient, since if D lies on the unit circle (i.e., if
dd is imaginary) then the torus is rectilinear, while if D has
equal real and imaginary parts (i.e., if b = π/4) then the
torus is rhombic. (The square torus being both rectilinear
and rhombic, corresponds to dd = i · π/4).

To completely specify an elliptic function in 3D-XplorMath,
choose one of JD, JE, JF, or WP from the Conformal
Map menu, and specify dd in the Set Parameter... dialog.
(Choosing Elliptic Function from the Conformal map menu
will give the default choices of JD and a square torus.)

When elliptic functions where first constructed by Jacobi
and by Weierstrass these authors assumed that the lattice
of the torus was given. On the other hand, in Algebraic
Geometry, tori appeared as elliptic curves. In this repre-
sentation the branch values of functions on the torus are
given with the equation, while an integration of a holo-
morphic form (unique up to a multiplicative constant) is
required to find the lattice. Therefore the relation between
the period quotient τ (or rather its SL(2, Z)-orbit) and the
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cross ratio lambda of the four branch values has been well-
studied. More recently, in Minimal Surface Theory, it was
also more convenient to assume that the branch values of
a degree two elliptic functions were given and that the pe-
riods had to be computed. Moreover, symmetries became
more important than in the earlier studies.

Note that the four branch points of a degree two ellip-
tic function (also called ”two-division points”, or Zwei-
teilungspunkte) form a half-period lattice. There are three
involutions of the torus which permute these branch points;
each of these involutions has again four fixed-points and
these are all midpoints between the four branch points.
Since each of the involutions permutes the branch points, it
transforms the elliptic function by a Moebius transforma-
tion. In Minimal Surface Theory, period conditions could
be solved without computations if those Moebius trans-
formations were not arbitrary, but rather were isometric
rotations of the Riemann sphere—see in the Surface Cat-
egory the minimal surfaces by Riemann and those named
Jd and Je. This suggested the following construction: As
degree two MAPS from a torus (T = C/L) to a sphere, we
have the natural quotient maps T/−id; these maps have
four branch points, since the 180 degree rotations have
four fixed points. To get well defined FUNCTIONS we
have to choose three points and send them to {0, 1,1}.
We choose these points from the midpoints between the
branch points, and the different choices lead to different
functions. The symmetries also determine the points that
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are sent to {−1,+i,−i}. In this way we get the most sym-
metric elliptic functions, and they are denoted JD, JE, JF.
The program allows one to compare them with Jacobi’s
elliptic functions. The function WP = JE ∗JF has a dou-
ble zero, a double pole and the values {+i,−i} on certain
midpoints (diagonal ones in the case of rectangular tori).
Up to an additive and a multiplicative constant it agrees
with the Weierstrass ℘-function, but in our normalization
it is the Gauss map of Riemann’s minimal surface on each
rectangular torus.

We compute the J-functions as follows. If one branch
value is called +B, then the others are {−B,+1/B,−1/B}.
Therefore the function satisfies the differential equations

(J 0)2 = (J 0(0))2(J4 + 1− (B2 + 1/B2)J2),

J 00 = (J 0(0))2(2J3 − (B2 + 1/B2)J).

Numerically we solve this with a fourth order scheme that
has the analytic continuation of the square root J 0 =

√
J 02

built into it.
H.K.
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