
Ordinary Differential Equations

in 3D-XplorMath, a Visualization Program

One Dimensional, First Order:
1.) Logistic Equation
2.) Equation of Mass Action
3.) User 1D First Order ODE

One Dimensional, Second Order:
4.) Harmonic Oscillator
5.) Pendulum
6.) Forced Oscillator
7.) Forced Duffing Oscillator
8.) Forced Van Der Pol Oscillator
9.) User 1D Second Order ODE

Two Dimensional, First Order:
10.) Harmonic Oscillator
11.) Pendulum
12.) Linear
13.) Volterra-Lotka
14.) User 2D First Order ODE

Two Dimensional, Second Order:
15.) Coupled Oscillators
16.) Forced Oscillators
17.) Foucault Pendulum
18.) User 2D Second Order ODE
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Three Dimensional, First Order:
19.) Linear
20.) Lorenz
21.) Rikitake 2-Disk Dynamo
22.) Rössler
23.) User 3D First Order ODE

Three Dimensional, Second Order:
24.) Coupled Oscillators
25.) Forced Oscillators
Charged Particles:
26.) Constant Magnetic Field
27.) Current in a Straight Wire
28.) Toroidal Magnetic Field
29.) Magnetic Dipole
30.) User Magnetic Field

31.) User 3D Second Order ODE
Central Force:
32.) Coulomb
33.) Power Law
34.) Yukawa
35.) Hooke’s Law
36.) Higgs
37.) User Central Force
Lattice Models:
38.) Fermi-Pasta-Ulam
39.) Toda
40.) Discrete Sine-Gordon
41.) Tacoma Narrows Bridge
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42.) Discrete Klein-Gordon
43.) User Lattice Model
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Forced Duffing Oscillator.

1. What is it?

What we shall call the Forced Duffing Oscillator Equa-
tion is the second order ODE for a single variable x,

d2x
dt2 = −hhx− ii x3 − aa dxdt + bb cos(cc t) (1)

whose solutions we display via the equivalent (non-autonomous)
first order system in two variables, x and y:

dx
dt = y, dy

dt = −hhx− ii x3 − aa y + bb cos(cc t) (2)
which in turn can be made into an autonomous first order
system in three variables, T , x and y:

dT
dt = 1, dx

dt = y, dy
dt = −hhx− ii x3 − aa y + bb cos(cc T ). (3)

We discuss the interpretation and significance of the five
parameters, aa, bb, cc, hh, ii below. Their default values
are: aa = 0.25, bb = 0.3, cc = 1.0, hh = −1.0, and ii = 1.0.

2. Why is it interesting?

Here are two of the considerations that make the oscil-
lator equation (1) worth studying. First, with appropri-
ate choices of parameter values it reduces to a variety of
mathematically and physically interesting oscillator mod-
els; some classical such as the harmonic oscillator (with
and without damping and forcing) and others that are
more exotic, such as the classic Duffing oscillator intro-
duced by Duffing in 1918. By putting these together in a
parametric family, we can investigate how various features
of these systems behave as we move around in the param-
eter space. Secondly—and more importantly—it was in in
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the study of the Duffing Oscillator that symptoms of the
phenomena we now call “chaos” and “strange attractor”
were first glimpsed (although their significance was only
appreciated later). By the Poincaré-Bendixson Theorem,
three is the smallest dimension in which an autonomous
system can exhibit chaotic behavior, and the Duffing sys-
tem is so simple that it lends itself very easily to the study
and visualization of the phenomena related to chaos.

3. The Newtonian Particle Interpretation.

Note that (1) becomes Newton’s equation of motion for
a particle of unit mass moving on the x-axis if we define
the “force”, F (x, dxdt , t), acting on the particle to be the
right-hand side of (1). Let’s interpret the various terms of
F from this point of view.

If hh is positive then the term −hhx by itself gives
Hooke’s Law for a spring, that “stress is proportional to
strain” and the parameter hh has the interpretation of
Hooke’s proportionality factor between the extension of
the spring, x, and the restoring force. If also ii = 0 then
we have a pure Hooke’s Law force that gives the Harmonic

Oscillator, d2x
dt2 = −hhx. But a real spring only satisfies

Hooke’s Law approximately, and the term −ii x3 repre-
sents the next term in the Taylor expansion of the restoring
force under the reasonable assumption that this force is an
odd function of the spring extension, x. (If ii is positive it
is called a “hardening” spring and if negative a “softening”
spring.) For the classic Duffing Oscillator, hh is negative
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and ii is positive and there is not a good interpretation of
the force in terms of a spring. Rather, the sum of the two
terms −hhx − ii x3 should be interpreted as the force on
a particle that is moving in a double-well potential as we
will discuss in more detail below.

The term −aa dxdt represents a “friction” force of the
sort that would be experienced by a particle like a bullet
traveling through air or a bead sliding on a wire; that is,
assuming that the “damping” or “friction” coefficient aa
is positive, it describes a force acting on the particle in the
direction opposite to the velocity and with a magnitude
that is proportional to the magnitude of the velocity.

Under the sum of the above terms of the force law F , the
particle will (in general) oscillate back and forth—which of
course is why it is called an oscillator—however if aa > 0
these oscillations will gradually die down as the kinetic en-
ergy is absorbed by friction. The final term in the force
law, bb cos(cc t) is a periodic forcing term that will act on
and perturb the motion of this oscillating particle, and we
note that it is solely a function of the time and is inde-
pendent of both the position and velocity of the particle.
We will discuss a possible physical interpretation of this
term later. The parameter bb is clearly the amplitude of
this forcing term, i.e., its maximum magnitude, and the
parameter cc is the angular velocity of its phase in radians
per unit time, so that the period of the forcing term is 2π

cc
and its frequency is cc

2π . As we shall see, it is the energy
that is fed into the system by this forcing term that is es-
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sential for the interesting chaos related effects to occur. In
fact the most interesting behaviors of solutions of (1) are
present when all the above terms are present in F , that
is when the oscillator is both forced and damped, and in
fact the way damping and forcing can balance each other is
crucial to understanding the general behavior of solutions.
However we will begin by analyzing the simpler situation
when both the damping and forcing terms are missing.

4. The Undamped, Unforced Case.

We now assume that aa and bb are both zero, so the
force F (x) = −hhx − ii x3 is a function of x alone. Now
in one-dimension, whenever this is the case the force is
conservative, that is, it is minus the derivative of a “po-
tential” function, U(x). Indeed, if we define U(x) :=
−
∫ x
0
F (ξ) dξ, then clearly F (x) = −U ′(x). If as above we

write y := dx
dt , define the kinetic energy by K(y) := 1

2y
2

and define the Hamiltonian or total energy function by
H(x, y) := K(y) + U(x), then dH

dt = y dydt + U ′(x)dxdt =

y(dydt + U ′(x)). So, if Newton’s Equation is satisfied, dydt =
d2x
dt2 = F (x) = −U ′(x), so dH

dt = 0. This of course is the
law of conservation of energy: the total energy function
H(x, y) is constant along any solution of Newton’s Equa-
tions. In one-dimension this provides at least in princi-
ple a way to solve Newton’s Equation for any initial con-
ditions x = x0 and y = y0 at time t = t0. Namely,
the path or orbit of the solution is a curve in the x-y
plane, and by conservation of energy this curve is given
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by the implicit equation H(x, y) = H(x0, y0). And since(
dx
dt

)2
= y2 = 2K(y) = 2(H(x0, y0)− U(x)), we find:

dt

dx
=

1√
2(H(x0, y0)− U(x))

,

so we can find t as a function of x by a quadrature, and
then invert this relation to find x as a function of t.

In the Harmonic Oscillator case, with hh = 1 and ii = 0,
U(x) = 1

2x
2 so H(x, y) = 1

2 (x2 + y2), so the orbits are
circles, and it is easy to carry out the above quadrature
and inversion explicitly, to obtain x(t) = x0 cos(t − t0) +
y0 sin(t− t0).

5. The Universal “Sliding Bead on a Wire” Model.

In one-dimension there is a highly intuitive physical
model that makes it easy to visualize the motion of a par-
ticle under a given force. Moreover this model is “uni-
versal” in the sense that it works for all forces that are
function of position only and hence, as we noted above,
are of the form F (x) = −U ′(x) for some potential function
U . Namely, imagine that we string a bead on a friction-
less piece of wire that lies along the graph of the equation
y = U(x). If the bead has mass m = 1 and if we choose
units so that g, the acceleration of gravity, equals one, then
the gravitational potential of the bead is mgh = h where
h is its height. So if as usual we interpret the ordinate of a
point as its height, then the gravitational potential of the
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bead when it is at the point (x, y) = (x, U(x)) is just U(x),
and the sliding motion of the bead along the wire under
the attraction of gravity will exactly model whatever other
system we started from!

In the case of the Harmonic Oscillator, where F (x) =
−x and U(x) = 1

2x
2, the graph is the parabola, y = 1

2x
2

and it is easy to imagine the bead oscillating back and
forth along this parabola.

For the unforced and undamped Duffing Oscillator the
force is F (x) = −hhx− ii x3, where for simplicity in what
follows we will assume that ii > 0 and hh < 0. The poten-
tial is U(x) = hh

2 x
2+ ii

4 x
4, which we note can be considered

as the first two terms in the Taylor expansion for an arbi-
trary symmetric potential with local maximum at 0. It is
easily checked that limx→±∞ U(x) = +∞ and in addition
to the local maximum at 0, there are two other critical

points of U , at x = ±
√
−hh
ii , where U has local minima.

For the default values, hh = −1 and ii = 1, the force is
F (x) = x(1−x2), and the potential is U(x) = 1

4x
2(x2−2),

so the local minima are at ±1. We graph this force F (x)
and potential U(x) below, and show a selection of the re-
sulting orbits. It should be clear why U is called a double-
well potential.
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F (x) U(x)

Some orbits of the Unforced, Undamped Duffing Oscillator

6. The Unforced, Damped Duffing Oscillator.

We now still assume bb = 0 (so there is no forcing) but
we assume that aa > 0, so there is damping. In the bead on
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a wire picture, aa dxdt = aa y is the friction from the bead
rubbing against the wire, and the force is now given by
F (x) = −U ′(x)− aa y. If we again calculate dH

dt as we did

above, we now find not dH
dt = 0 but instead dH

dt = −aa y2.
The result is that instead of the orbits of the bead in the
x-y-plane being closed curves of constant total energy H,
the energy decrease along the obits, and they cut across
the H = constant curves and spiral in towards the two
minima of H at the bottom of the two potential wells. We
show a selection of the resulting orbits below.

Some orbits of the Unforced, Damped Duffing Oscillator
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7. The Forced Duffing Oscillator.

We now add back the forcing term bb cos(cc t). First a
word about how to interpret this force in the sliding bead
picture. If we assume that there is an alternating electric
field parallel to the x direction and with strength cos(cc t)
at time t, then bb cos(cc t) will be the electric force felt by
the bead if we give the bead an electric charge of magnitude
bb.

Some orbits of the Forced, Damped Duffing Oscillator

8. Chaos, Strange Attractors, and Poincaré Sections.
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Two Slices of the Duffing Attractor
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About ODE 2nd Order: Charged Particles

The Motion of Charged Particles
in Magnetic Fields

The path p(t) of a particle with electric charge e and mass
m in a magnetic field B is given by

m · p′′(t) = e · p′(t)×B(p).

(The right hand side is called the Lorentz Force.)

This implies that, for an arbitrary magnetic fields, B, the
kinetic energy E(t) = m

2 〈p
′, p′〉(t) is constant in time.

One should first convince oneself in the case of a
Constant Magnetic Field

that a particle can move tangentially to the field lines, in
circles around the field lines and in helices around the field
lines, i.e., in any linear combination of the first two special
cases.
Put in Settings, ODE Settings:
vx = 0.003, vy = 0.003, vz = 0.5, to obtain almost circles
around the field lines.
And put vx = 0.2, vy = 0.2, vz = 0.001 to obtain approxi-
mate straight lines parallel to the field lines. The Default
Settings give a general helix. We will also try to understand
charged particle motions in nonlinear fields by looking at
such special cases.
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We consider next motion of a charged particle in the:

Field of an Electric Current

along the x-axis. The field lines are circles parallel to the y-
z-plane with centers on the x-axis. In this case, the Default
Settings give initial conditions in the x-y-plane (a sym-
metry plane of the field) that are orthogonal to the field
lines. The solution curves therefore remain in this plane,
and are, for small velocities, almost circles around the field
lines. But, because the absolute value of the field is de-
creasing with r, these solution curves are more strongly
curved the nearer they are to the wire. They are therefore
rolling curves with a translational period in the direction
of the wire. (See Plane Curves, Cycloid and put aa = 1
and bb = 6.5 in the Set Parameters dialog.) If in ODE
Settings one increases the velocity to vy = 0.5, then the
translational part is so large that the consecutive loops do
not intersect.
We obtain solution curves which almost follow the field
lines if we make the initial velocity tangential to the field
lines and fairly small:

vx = 0, vy = 0, vz = 0.02,

Time span = 450, Step-size = 0.2.

Now slowly increase vz, e.g., to vz = 0.2, to obtain an-
other family of solutions follows the field lines, but winding
around them in small loops.
Next in Settings, ODE Settings, put:
vx = 0.02, vy = 0.02, vz = 0.01
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leaving Time span = 450, Step-size = 0.2, as before.
Finally we increase the initial velocity to obtain solution
curves that look fairly wild at first but can be seen to fol-
low the pattern which we recognized for more special initial
conditions, namely put
vx = 0.2, vy = 0.2, vz = 0.1
to see solutions that follow helices with wide loops around
them. Try by all means to view this in stereo!

Finally we consider the so-called Störmer Problem, namely
the motion of charged particles in a Magnetic Dipole Field.
Since the magnetic field of our Earth is a dipole field, such
motions occur in the van Allan Belt when charged particles
from the Sun’s plasma meet the Earth. A dipole field B(p)
with a magnetic moment mm is given by:

B(p) = 3〈mm, p〉 p
|p|5
− mm

|p|3
.

The Default ODE Settings give a fairly general but some-
what complicated solution curve. To see solutions that al-
most follow the field lines use ODE Settings to set a small
initial velocity tangential to the field lines, say vx = 0, vy =
0, vz = 0.05. To see solutions that almost circle the field
lines in the equator plane of the dipole, in the ODE Set-
tings dialog, choose small initial conditions in the equator
plane, e.g., vx = 0.1, vy = 0.1, vz = 0. The resulting curves
are close to rolling curves. (Compare Plane Curves, Cir-
cle using, Parameter Settings: hh = −0.125, ii = 4, and
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increase t-Resolution to 200, then choose Generalized Cy-
cloids from the Action Menu.) Since the absolute value
of the field increases along the field lines from the equator
towards the poles, one cannot have solutions that almost
follow the field lines while circling them in narrow loops,
however one can approximate such behavior with the ini-
tial condition vx = 0.035, vy = 0.035, vz = 0.05.

In a Plenary address on Dynamical Systems he gave at the
1998 International Congress of Mathematicains in Berlin,
Jürgen Moser had an interesting discussion of the Störmer
Problem that we reproduce below from Documenta Mathe-
matica, Extra Volume, ICM 1998, pp. 381–402. (After the
lecture, one of us approached Moser and showed him the vi-
sualization of the Störmer Problem in 3D-XplorMath. He
appeared to be delighted by it, but said something looked
not quite right to him, a remark that helped us eliminate
a small bug!)

Here is the extract from Moser’s lecture.

R.S.P. & H.K.

d) The Störmer Problem.

Another large scale confinement region is known in the
magnetic field of the earth. With the advent in 1957 of
satellites it was soon discovered that the earth was sur-
rounded by (two) belts of charged particles caused by its
magnetic field. Since the beginning of the century it was
known that such charged particles were present above the
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atmosphere and were responsible for the aurora borealis
(and australius). It was Störmer (incidentally president of
the ICM 1936 in Oslo) who made calculations of the orbits
of these charged particles moving in the magnetic field of
the earth, which he modelled as a magnetic dipole field.
This is an interesting nonlinear Hamiltonian system.

The satellite measurements led to the discovery of two
regions surrounding the earth, the so-called van Allan belts,
in which charged particles were trapped. It turns out that
it is an example of a magnetic bottle to which the stability
theory is applicable (M. Braun 1970).

It is interesting to realize the dimensions involved: For
electrons, the “cyclotron radius” is of the order of a few
kilometers and the corresponding periods of oscillation about
one millionth of a second! The “bounce period” of travel
from north pole to south pole and back is a fraction of a
second.

In addition to these natural van Allan belts several ar-
tificial radiation belts have been made by the explosion
of high-altitude nuclear bombs since 1958. Some of those
so created belts had a lifetime up to several years—which
shows the long stability of these experiments as well as the
irresponsibility for carrying them out! Some 30 years ago
these tests have been stopped.
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Störmer Problem

Van Allen Belt


