
About Minimal Surfaces

Discovery and physical interpretation.

The question which surfaces locally minimize area led
Lagrange in 1760 to the minimal surface equation for
graphs. By 1765 Meusnier had found that a geomet-
ric interpretation of this equation is: the mean curva-
ture of the surface vanishes. He discovered that the
catenoid and the helicoid are nonplanar examples. It
took until 1835 for the next examples to appear, dis-
covered by Scherk; his doubly periodic surface is a
graph over the black squares of a checkerboard tes-
selation of the plane and his singly periodic surface
is nowadays viewed as a desingularization of two or-
thogonally intersecting planes. In the following years
complex analysis developed and by 1865 many ex-
amples were known through the efforts of Riemann,
Weierstraß, Enneper and in particular Schwarz.

Also in that period Plateau had made careful experi-
ments with soap films. He convinced people that soap
films were a perfect physical realization of minimal
surfaces, and he convinced mathematicians that they



should solve Plateau’s Problem, i.e. prove that every
continuous injective closed curve in R

3 spans a mini-
mal surface. This problem was solved in 1932 by Dou-
glas and independently by Rado. On the way to this
solution mathematicians had learnt a lot about non-
linear elliptic partial differential equations. In par-
ticular the importance of the maximum principle had
become clear, it implies for example that every com-
pact minimal surface is contained in the convex hull
of its boundary and that boundary value problems
are well posed for the minimal surface equation.

On the other hand, although the Cauchy-Kowalewski
theorem allows to solve locally initial value problems
with analytic data, there is no continuous depen-
dence on the data and no hope to obtain complete
immersed examples with this method. — But, al-
ready Weierstraß had established the close connection
of minimal surfaces with complex analysis. In partic-
ular: the spherical Gauss map composed with stere-
ographic projection is locally a holomorphic function
G : M2 → C. In terms of the 90◦ rotation of each
tangent space of the minimal surface M2 holomor-
phicity has the following intuitive interpretation: for
each v ∈ TM2 we have the following version of the



Cauchy-Riemann equations

dG(Rot(90◦) ◦ v) = i · dG(v).

Moreover, the three component functions of the im-
mersion (F 1, F 2, F 3) : M2 → R

3 are, locally, the
real parts of holomorphic functions because the dif-
ferential forms ωj := −dF j ◦ Rot(90◦) are closed for
surfaces with mean curvature zero (Meusnier’s above
interpretation of “minimal”). This fact establishes
the Weierstraß representation:

Let G be the holomorphic Gauss map and
dh := dF 3− i ·dF 3 ◦Rot(90◦) the (holomor-
phic) complexification of the differential of
the height function F 3 then
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The examples of the second half of the 19th cen-
tury were made with this representation. But results,
achieved by 1960 by Huber and Osserman show, that
all minimal surfaces of a certain kind can be obtained
by a global application of this representation, namely:



Complete, immersed minimal surfaces of finite to-
tal curvature can be conformally compactified by
closing finitely many punctures; moreover, the Wei-
erstraß data G, dh extend meromorphically to this
compact Riemann surface.

The wealth of examples, discovered since about 1980,
rely on this theorem. To understand these examples
better we note the first and second fundamental forms
(Riemannian metric and, if |v| = 1, normal curva-
ture)

I(v, v) =
1
4
(

1
|G| + |G|)2|dh(v)|2

II(v, v) = Re
dG(v)

G
dh(v).

The points p on the Riemann surface which are poles
of dh do not correspond to points on the minimal
surface. Every (differentiable) curve which runs into
such a puncture p has infinite length on the minimal
surface. The same is true if G has a zero or pole of
higher order than the vanishing order of dh. If these
orders are the same then we simply have a point with
vertical normal on the minimal surface. And at points



where the vanishing order of dh is larger, the metric
becomes singular and the minimal surface has a so
called branch point, it is no longer an immersion.

Visualization of minimal surfaces.

The Weierstraß representation allows to write down
a number of simple minimal surfaces which can be
visualized like any other surface for which an ex-
plicit parametrization is given. Our parameter lines
come from polar coordinates with centers {0,∞} or
{1,+1}. Note that the zeros and poles of G, dh fit
together so that no branch points occur and so that
the minimal surfaces are complete on the punctured
spheres mentioned in each case. The surfaces are of
finite total curvature, since the Gauss map is mero-
morphic, i.e., its image covers the Riemann sphere a
finite number of times.
First Examples,

defined on C or C \ {0} or S
2 \ {1,−1}:

Enneper Surface:
z ∈ C, G(z) := z, dh := zdz

Polynomial Enneper:
z ∈ C, G(z) := P (z), dh := P (z)dz



Rational Enneper:
z ∈ C, G(z) := P (z)/Q(z), dh := P (z)Q(z)dz

P and Q are polynomials without common zeros.
Vertical Catenoid:

z ∈ C \ {0}, G(z) := z, dh := dz/z,

or G(z) := 1/z

Helicoid:

z ∈ C, G(z) := exp(z), dh := idz = i
dG

G
Helicoid:

z ∈ C \ {0}, G(z) := z, dh := idz/z

Planar to Enneper:
z ∈ C \ {0}, G(z) := zk+1, dh := zk−1dz

Wavy Catenoid:
z ∈ C \ {0}, G(z) := (1 + ε · zk)/z, dh := G(z)dz

Wavy Plane:
z ∈ C \ {0}, G(z) := z, dh := dz

Horizontal Catenoid:

z ∈ S
2 \ {1,−1}, G(z) := z, dh :=

dz/z

(z − 1/z)2
.





All of these simple minimal surfaces have symmetries:
(i) straight lines on a minimal surface allow 180◦ ro-
tations of the minimal surface into itsself, and (ii)
planar geodesics on a minimal surface allow reflec-
tion (in the plane of the geodesic) of the minimal
surface into itsself. Since these symmetries become
more important for understanding more complicated
surfaces one should learn how to recognize them. The
straight lines are geodesics with normal curvature
II(c′, c′) = 0 or dG(c′)/G · dh(c′) ∈ i · R. In the
present context we recognize geodesics as fixed point
sets of isometric involutions. The formula for the first
fundamental form is so simple that one can easily see
in all of these examples that the expected symmetry
indeed does not change the Riemannian arc length of
curves. To recognize the planar geodesics note that a
geodesic on a surface is planar if it is also a principal
curvature line; in addition to seeing it as the fixed
point set of a length preserving involution we there-
fore only need to check dG(c′)/G · dh(c′) ∈ R, which
is also easy in these examples.
In 3D-XplorMath one can easily change (in the Set-
tings Menu) the range of the parametrization and also
the symmetry of the surface. We recommend that



the surfaces are looked at from far away when a large
range for the parametrization is chosen. We also rec-
ommend to look at the default morphs of WavyEn-
neper and WavyCatenoid since it is quite surprising
how suddenly the perturbation becomes visible. This
should be taken as an illustration that the initial
value problem for minimal surfaces is highly unstable,
it is ill posed and no numerical solution is possible.

More complicated spherical examples.

The sudden increase of the interest in minimal sur-
faces after 1980 was largely caused by the discovery
of a quite unexpected embedded finite total curvature
minimal surface by Costa with embeddedness discov-
ered and proved by Hoffman-Meeks. We are not yet
close to such an example because of the following

Theorem of Lopez-Ros. An embedded, minimal, fi-
nite total curvature punctured sphere is a plane or a
catenoid.

To practise using the Weierstraß representation we
therefore have to be content with a few immersed
punctured spheres. We want to learn how to see the
Gauss map when one looks at the picture of such a
minimal surface. The main fact to use is: a meromor-



phic function on a compact Riemann surface is deter-
mined up to a constant factor by its zeros and poles.
In the case of the Jorge-Meeks k-noids one clearly
sees a k-punctured sphere with a horizontal symme-
try plane. One observes only two points with vertical
normal, one up, one down. The qualitative behaviour
of the Gauss map along the horizontal symmetry line
suggests a mapping degree k−1. This leaves no choice
but G(z) = zk−1. If we look back at the very simple
examples then we can observe that, at a catenoid like
puncture, either Gdh or dh/G has precisely a double
pole. This determines the dh below up to a constant
factor.
The next two examples, the 4-noid with orthogonal
ends of different size, and the double Enneper, have
a quite different appearance, but they have the same
Gauss map. The vertical points are symmetric with
respect to the origin and symmetric with respect to
the unit circle, and the degree of the Gauss map is
three; this determines the Blaschke product expres-
sion below. In the case of the 4-noid we need to create
the four catenoid ends with double poles of dh and
we need to compensate the simple zeros and poles of
G by simple poles of dh; then, if we also treat zero



and infinity symmetrically, the expression below is
forced. In the case of the double Enneper surface we
just need to compensate the simple zeros and poles of
G (outside 0,∞); symmetric treatment of 0,∞ gives
the dh below (except for a constant factor).
The last example illustrates in which way attempted
counter examples to the Lopez-Ros theorem fail. A
residue computation for the Weierstraß integrands
shows that closed curves around the punctures ±1
on the sphere are not closed curves on the minimal
surface, if we want all limit normals to be vertical.
It is easy to close this so called period when one al-
lows tilted catenoid ends, but, as one decreases the
tilt, the distance between the half catenoids increases,
and they intersect the planar middle end if one com-
putes the surface far enough towards the punctures.

The k-noids of Jorge-Meeks:

z ∈ S
2 \ {e2πi·l/k; 0 ≤ l < k},

G(z) := zk−1, dh := (zk + z−k − 2)−1 · dz/z.

4-noids with two different orthogonal ends:
z ∈ C \ {0,−1,+1}, G(z) := z · z−r

1−rz · z+r
1+rz ,

dh :=
(
1 − z2+z−2

r2+r−2

)
· (z2 − z−2)−2 · dz/z.



Two Enneper ends joined by a catenoidal neck:
z ∈ C \ {0},
G(z) := z · z−r

1−rz · z+r
1+rz , dh :=

(
1 − z2+z−2

r2+r−2

)
· dz/z.

Three punctures, period closes for tilted ends:
z ∈ C \ {−1,+1},
G(z) := ρ(z2 − r2), dh := z2−r2

(z2−1)2 dz.

Observe that the zeros and poles of the Gauss map
which are not in the list of punctures are compensated
by zeros of dh. At the embedded ends, Gdh or dh/G
have a double pole and at the Enneper ends they have
higher order poles. — In this list we do not have
simple poles of Gdh and dh/G. If this happens then
the Weierstraß integral behaves similar to

∫
dz/z: the

unit disk, punctured at 0, is mapped by log to an
infinite number of half strips parallel to the negative
real axis and of width 2π. Similarly, the Weierstraß
integral produces simply periodic embedded minimal
surfaces parametrized by punctured spheres.

Generalized Scherk Saddle Towers:
z ∈ S

2 \ {e±φ · e2πi·l/k; 0 ≤ l < k},
G(z) := zk−1, dh := (zk + z−k − 2 cos kφ)−1 · dz/z.





As in the simpler examples, observe that the sym-
metry lines can be seen from the Weierstraß data.
We also note that at this point an important decision
has to be made. If one represents the surfaces, as
in all our examples, with parameter lines then each
surface requires a special effort so that the parameter
lines on the one hand support the complex analytic
background of the minimal surface and on the other
hand suggest correctly how one should imagine how
the surface extends beyond what the picture shows.
In 3D-XplorMath this individual approach has been
taken. The other option is to spend considerably
more general effort by writing software which will
create a suitable triangulation of the domain. David
and Jim Hoffman have such a program running. It re-
quires much less individual work to compute another
minimal surface but it is harder to illustrate the com-
plex analysis background of the computed minimal
surface.

The family of singly periodic embedded minimal sur-
faces which resemble the above generalized Scherk
Saddle towers is much larger than the above explicit
formulas suggest. So far we have only talked about
the real part of the Weierstraß integral. In fact, a



1-parameter (“associate”) family of isometric (and in
general not congruent) minimal surfaces are given by
this integral because dh can be changed by the fac-
tor exp(−2πiϕ). In particular, the imaginary part
of the Weierstraß integral is the “conjugate” minimal
surface. In the case of the generalized Scherk saddle
towers we have that the conjugate minimal immer-
sion maps the unit disk (with the punctures on the
boundary) to a graph over a convex polygon; its edge
lengths all agree. The minimal graph has over each
edge the boundary value +∞ or −∞, alternatingly.
— Jenkins-Serrin proved the converse: every such in-
finite boundary value problem has a graph solution,
a minimal disk whose conjugate minimal surface is
the fundamental piece of an embedded singly peri-
odic saddle tower.

Having seen a good collection of minimal surfaces
parametrized by punctured spheres we now turn to
minimal surfaces parametrized by other Riemann sur-
faces.

H.K.




