Modeling Suspension Bridge Oscillations

Kristen Moore

Under certain physical assumptions, the Sine-Gordon Equation models the torsional oscillations
of the center span of a suspension bridge. Such oscillations were observed on the Tacoma
Narrows Bridge immediately prior to its spectacular failure in 1940, and were clearly
responsiblefor the ensuing collapse of the span. The lattice model used for this visualization is
mathematically identical to the one used for the visualization of the Discrete Sine-Gordon
Lattice.in that visualization, vertical pendula replace the horizontal cross-sections of roadway
transverse to the length of the span that are seen in the present visualization.

In the 3DFSdocs folder is a Quicktime movie called Tacoma Narrows Bridge.mov that shows
the actual historic collapse of the Tacoma Narrows Bridge. (You can use the .Open Movie,,,
selection from3D-XplorMath the File menu to view it.)

The Tacoma Narrows Bridge Failure

The Tacoma Narrows Bridge was well known for its vertical
oscillations; indeed, it earned the nickname "~ "Galloping
Gertie'' because it would oscillate vertically in winds of only
3-4 miles per hour. On November 7, 1940, just four months after
it opened, as the bridge was engaging in its usual vertical
activity, the nature of the motion changed suddenly, ~ almost
instantaneously,'' as one witness described it, from pure



vertical to pure torsional. This violent twisting motion
persisted for about 45 minutes, changing occasionally from one-
noded to no-noded twisting, and the bridge collapsed.

We argue that the motion of suspension bridges is governed by
nonlinear partial differential equations and that the inherent
nonlinearity yields the fascinating behavior that was observed
at Tacoma Narrows, including:

e the existence of large amplitude motion which persists over
long time

e the changing nodal structure of the motion

e the dramatic change from vertical to torsional oscillation.

Large Amplitude Torsional Oscillations in Suspension
Bridges

P.J. McKenna, K.S. Moore

For over fifty years, scientists in many disciplines have struggled to explain
the cause of the dramatic and finally destructive oscillations of the Tacoma
Narrows Bridge which preceded its collapse in 1940. We argue that the
motion of suspension bridges 1s governed by nonlinear partial differential
equations and that the inherent nonlinearity gives rise to large amplitude
oscillations. Theoretical and numerical evidence to support this claim for the

vertical, torsional, and traveling wave motion of suspension bridges can be
found in [2] -- [8].

Recall the /inear equation which governs the motion of a mass oscillating at
the end of a spring in a damped medium with periodic forcing. If you
remember your undergraduate ODE course, you know that the solution to the
equation is made up of two pieces: the natural response (also called the
homogeneous or complementary solution), which depends on the initial
position and velocity of the mass, and the forced response (also called the
particular solution), which depends on the external forcing.

If the system 1s damped, then the natural response decays to zero; i.¢., the



effect of the initial conditions ""damps away" and the long term behavior of
the mass is governed entirely by the forcing. Thus, whether the initial
displacement of the mass is large or small, the long term behavior will be the
same.

However, this is not the case for the torsional motion of a suspension bridge.
Because the equation which governs its motion is {\em nonlinear}, we find
that under small periodic forcing, the solution is extremely sensitive to small
changes in the initial conditions. For example, in some numerical
experiments, we found that a change in the bridge's "initial twist" of only 5
degrees could mean the difference between periodic twisting of 3 degrees and
periodic twisting of over 60 degrees! [5] , [8]

Using this module, you can search for this and other types of unpredictable
bridge behavior. Below I describe a model for the torsional oscillation of the
main span and I suggest some experiments that you can try.

THE MODEL

We view the center span as a beam ol length L suspended by cables which
resist elongation according to Hooke's Law with spring constant K. but do
not resist compression. Let @(x, 1) be the angular displacement at time {
of the horizontal cross section of the beam located at position @ € [0, L]
Assuming the cables remain in tension (ie.. assuming that the cable force
remains linear), @ satisfies
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[8]. where m is the mass of the cross section, 6 is the damping constant, f is
the external force, and £ is a physical constant related to the Hexibility of the
beam. The boundary condition reflects the fact that the ends of the beam
are hinged.

From [1]./5]. we choose
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For a eross section similar to the Tacoma Narrows bridge, wind tunnel
experiments indicate that aerodvnamic forces should induce approximately
sinusoidal oscillations of amplitude three degrees [9], so we choose omr exter-
nal forcing term to be sinusoidal in time. We take
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where A € |0, 0.06] is chosen to produce the appropriate behavior near equilib-
ritim and the frequency s chosen to mateh the requency of the oscillations
observed at Tacoma Narrows on the day of the collapse. The frequency of
the torsional motion was approximately one cyele every 4 or 5 seconds, so
we take poe [1.2, 1.6],

The motion observed on the day of the collapse was, for the most part, a
one-noded motion (i.e.. no torsional displacement in the middle of the span).
Oceasionallv, the motion changed to no-noded twisting and back again to
one-noded. Thus, we choose
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To solve this PDE munerically for ¢ e [00T7], we must discretize o

domain D = [0, L] = [0,T]. Let xq,2.,.... 2 form a uniform partition
of the interval [0. L] e, let the N 4 1 points x, be equally spaced with
0=y <y < ... < &y < xny = Lo Detne #,(t) = #x;.t). Observe

that if p{x) = sin(na$). we can express p independent of @ by writing p, =
sin{nr—=). Suppressing the independent variable ¢ and discretizing the 6,
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term via a central difference, onr model (1) above becomes
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where Axr — 1, — ;. This system ol nonlinear ODEs in #, is often called
the diserete Sine-Ciovdon equation.
The current version of this module does not include the damping or fore-
ing terms in (2); it solves the equation
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Let us rewrite (3) above as
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so that our notation is consistent with the other modules in this categorv.

Ilustrating Solutions to the Bridge Equation: Suggested Experiments

With the current version of this module, one can change the physical
parameters and investigate the response of the "bridge". Since the length of
the bridge is finite and the ends are fixed, choose "Zero

Boundary Conditions" in the Set Lattice Parameter menu under the Action
Menu. Since thetorsional oscillations on the Tacoma Narrows Bridge were
sinusoidal in space, choose the initial shape to be sinusoidal and select
"Bridge Display" in the Set Lattice Parameters menu.

You can select the following physical parameters:

« (cc/aa)?, which is related to the flexibility of the building material.
Historically, the more flexible suspension bridges such as the original
Bronx-Whitestone, Golden Gate, Tacoma Narrows, and Deer Isle bridges
were prone to large oscillation. Thus we suspect that smaller values of
this parameter will yield large amplitude solutions.

« bb?, which is related to 3K/m, the ratio of the cable rigidity to the mass
per unit length of the roadbed. For the original Tacoma Narrows, we
estimate this ratio to be about 1.2. In [8] we proved that if this parameter
is "small", the equation has a unique periodic solution; in other words the
behavior of the bridge is predictable. However, if this parameter is
"large", the equation has multiple periodic solutions; in other words, the

behavior is unpredictable. Thus, for large values of bb2, small or large
amplitude periodic oscillation might result.
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