
The Spherical Helicoids

See also: K=1 Surfaces of Revolution

A general helicoid can be obtained by applying a
screw motion to a planar curve. Suppose the curve
is given as s 7→ (f(s), g(s)), then the helicoid can be
written as

F (s, t) = (f(s) cos t, f(s) sin t, g(s) + ht)

with a non-zero constant h. The surface which is
generally called the helicoid arises as the special case
f(s) = s and g(s) = 0. Our more general class of heli-
coids is useful because it allows to construct concrete
examples of surfaces that are otherwise elusive.

For example, let us specialize a little by taking
f(s) = s (so that the curve is a graph over the t-axis).
Then the Gauss curvature of these helicoids is

K =
−h2 + s3 g′(s) g′′(s)
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2

)2

This is just a first order ODE for g′(s), and it is easy
to check that

g′(s) =

√

−1 − h2

s2
+

1

a −
√

K s2



is a 1-parameter family of solutions in the case that
K is a (positive) constant. The family parameter is
a. Observe that the additional integration constant
we get by integrating g′ only amounts to a vertical
translation of the surface.

As all complete surfaces of positive constant cur-
vatures are round spheres, any other example must
necessarily develop singularities. This was for a long
time a perfectly good reason to ignore them, and now
it has been for a while a perfectly good reason to find
them interesting.

For our spherical helicoids, the singularity arises
as the curve s = s0 for the value of s0 where the
integrand g′(s) becomes 0, and is thus a horizontal
circle.

The surface appears as an exercise in Eisenhart’s
A Treatise On The Differential Geometry of Curves

And Surfaces. It was certainly well known much ear-
lier.

M.W.



An alternative description

The velocity vector field X of a screw motion in R
3

is X(x, y, z) = (−y, x, h). On a surface that is screw
motion invariant one finds that the unit speed curves
γ orthogonal to X are geodesics: The covariant deriva-
tive D

ds
γ′ is zero because it is orthogonal to γ′ and to

X ◦ γ, namely:
0 = 〈γ′, γ′〉′ = 2〈γ′, D

ds
γ′〉

0 = 〈γ′,X ◦ γ〉 =⇒ 0 = 〈D

ds
γ′,X ◦ γ〉 + 0.

A Killing field restricts along a geodesic to a Jacobi
field J = X ◦ γ, and on a 2-dim surface we have (be-
cause of γ′ ⊥ J) that J/|J | is a parallel field. There-
fore we get from the Jacobi equation

|J |′′ = −K · |J |, i.e., if K = 1 then |J(s)| = a ·cos(s).

We write γ(s) = (γ1(s), γ2(s), γ3(s)) and abbreviate
r2 = x2 + y2, r(s) :=

√

γ2

1
(s) + γ2

2
(s). This gives:

|J(s)| =
√

r2(s) + h2 = a · cos(s).

What remains is a first order ODE for γ(s). We ab-
breviate the radial horizontal vector field as nr, i.e.,



nr ◦ γ = (γ1, γ2, 0)/r, and we extend the orthonor-
mal vectors {nr,X/|X|} to an orthonormal basis with
nz(x, y, z) := (y · h/r,−x · h/r, r)/

√
r2 + h2. Then

γ′(s) = r′(s) · nr ◦ γ(s) +
√

1 − r′(s)2 · nz ◦ γ(s).

One needs |r′(s)| ≤ 1 and this condition gives

smax :=
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.

One can check that this condition implies
r2(s) = a2 cos2(s) − h2 ≥ 0.

The final family, with parameters a and h, is

F (s, t) =





γ1(s) cos t − γ2(s) sin t
γ1(s) sin t + γ2(s) cos t

γ3(s) + h · t



 .

If h = 0 one obtains surfaces of revolution with merid-
ian γ(s), and a = 1 is the sphere.


