
Plane Curves*

in 3D-XplorMath, a Visualization Program

1.) Circles
2.) Ellipses
3.) Parabolas
4.) Hyperbolas
5.) Conic Sections
6.) Kepler Orbits, explaining 1/r-Potential
7.) Nephroid of Freeth
8.) Sine Curve
9.) Catenary

10.) Convex Curves from Support Function
11.) Tractrix
12.) Cissoid and Strophoid
13.) Conchoid
14.) Lemniscate
15.) Clothoid
16.) Archimedean Spiral
17.) Log Spiral
18.) Cycloid
19.) Epi- and Hypocycloids
20.) Cardioid and Limaçon
21.) Astroid
22.) Deltoid

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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23.) Nephroid
24.) Mechanically Generated Curves with Tangents
25.) Seven Cubic Curves, five with Addition:

Cubic Polynomial, Cuspidal Cubic,
Connected Rational Cubic, Rational Cubic with Poles,
Elliptic Cubic; Folium, Nodal Cubic

26.) Elliptic Functions, parametrizing Elliptic Curves
27.) Geometric Addition on Cubic Curves
28.) Folium
29.) Implicit Planar Curves, highly singular examples:

Tacnodal Quartic, Teissier Sextic
30.) Cassinian Ovals, an implicit family
31.) Userdefined Curves, explicitly parametrized:

User Cartesian, User Polar, User Graph
implicit: User Implicit Curves

32.) User Curves by Curvature
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The Circle*

x = aa cos(t), y = aa sin(t), 0 ≤ t ≤ 2π

3DXM - suggestion: Select from the Action Menu
Show Generalized Cycloid and vary in the Settings Menu,
entry: Set Parameters, the (integer) ratio between the ra-
dius aa and the rolling radius hh.
The length of the drawing stick is ii∗rolling radius.

The circle is the simplest and best known closed curve in
the plane. The default image shows the circle together
with the theorem of Thales about right angled triangles.
Other properties of the circle are also known since over
2000 years. In fact, many of the plane curves that have
individual names were already considered (and named) by
the ancient Greeks, and a large class of these can be ob-
tained by rolling one circle on the inside or the outside of
some other circle. The Greeks were interested in rolling
constructions because it was their main tool for describ-
ing the motions of the planets (Ptolemy). The following
curves from the Plane Curve menu can be obtained by
rolling constructions:
Cycloid, Ellipse, Astroid, Deltoid, Cardioid, Limaçon,
Nephroid, Epi- and Hypocycloids.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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Not all geometric properties of these curves follow easily
from their definition as rolling curve, but in some cases the
connection with complex functions (Conformal Category)
does.

Cycloids arise by rolling a circle on a straight line. The
parametric equations code for such a cycloid is

P.x := aa · t− bb sin(t)
P.y := aa− bb sin(t), aa = bb.

Cycloids have other cycloids of the same size as evolute
(Action Menu: “Show Osculating Circles with Normals”).
This fact is responsible for Huyghen’s cycloid pendulum to
have a period independent of the amplitude of the oscilla-
tion.

Ellipses are obtained if inside a circle of radius aa another
circle of radius r = hh = 0.5aa rolls and then traces a curve
with a radial stick of length R = ii · r. The parametric
equations for such an ellipse is

P.x := (R + r) cos(t)
P.y := (R− r) sin(t).

In the visualization of the complex map z → z + 1/z in
Polar Coordinates the image of the circle of Radius R is
such an ellipse with r = 1/R.
Astroids are obtained if inside a circle of radius aa an-
other circle of radius r = hh = 0.25aa rolls and then traces
a curve with a radial stick of length R = ii · r = r. Para-
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metric equations for such Astroids are

P.x := (aa− r) cos(t) + R cos(4t)
P.y := (aa− r) sin(t)−R sin(4t).

Astroids can also be obtained by rolling the larger circle of
radius r = hh = 0.75aa (put gg = 0 in this case). Another
geometric construction of the Astroids uses the fact that
the length of the segment of each tangent between the x-
axis and the y-axis has constant length. — Try hh :=
aa/3 to obtain a Deltoid.

Cardioids and Limaçons are obtained if outside a circle
of radius aa another circle of radius r = hh = −aa rolls
and then traces a curve with a radial stick of length R =
ii · r, ii = 1 for the Cardioids, ii > 1 for the Limaçons.
Parametric equations for Cardioids and Limaçons are

P.x := (aa + r) cos(t) + R cos(2t)
P.y := (aa + r) sin(t) + R sin(2t).

The Cardioids and Limaçons can also be obtained by rolling
the larger circle of radius r = hh = +2aa; now ii < 1 for
the Limaçons. Note that the fixed circle is inside the larger
rolling circle.
The evolute of the Cardioid (Action Menu: Show Osculat-
ing Circles with Normals) is a smaller Cardioid. The image
of the unit circle unter the complex map z → w = (z2+2z)
is a Cardioid; images of larger circles are Limaçons. In-
verses z → 1/w(z) of Limaçons are figure-eight shaped,
one of them is a Lemniscate.
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Nephroids are generated by rolling a circle of one ra-
dius outside of a second circle of twice the radius, as the
program demonstrates. With R = 3r we thus have the
parametrization

P.x := R cos(t) + r cos(3t)
P.y := R sin(t) + r sin(3t).

As with Cardioids and Limaçons one can also make the
radius for the drawing stick shorter or longer: After select-
ing Circle set the parameters aa = 1, hh = −0.5, ii = 1 for
the Nephroid and ii > 1 for its looping relatives. – Pick in
the Action Menu: Show Osculating Circles with Normals.
The Normals envelope a smaller Nephroid.

The complex map z → z3 +3z maps the unit circle to such
a Nephroid. To see this, in the Conformal Map Category,
select z → zee + ee · z from the Conformal Map Menu,
then choose Set Parameters from the Settings Menu and
put ee = 3.

Archimedes’ Angle Trisection. A demo of this con-
struction can be selected from the Action Menu.

Circle Involute Gear. Another demo from the Action
Menu. Involute Gear is used for heavy machinery be-
cause of the following two advantages: If one wheel rotates
with constant angular velocity then so does the other, thus
avoiding vibrations. If the teeth become thiner by usage,
the axes can be moved closer to each other.
H.K.
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The Ellipse*

x(t) = aa cos(t), y(t) = bb sin(t), 0 ≤ t ≤ 2π

3DXM-suggestion:
Select in the Action Menu: Show Osculating Circles with
Normals. In the Animate Menu try the default Morph.
For related curves see: Parabola, Hyperbola, Conic Sec-
tions and their ATOs.

The Ellipse is shown together with the so called Leitkreis
construction of the curve and its tangent, see below. This
construction assumes that the constants aa and bb are pos-
itive. The larger of the two is called the semi-major axis
length, the smaller one is the semi-minor axis length.
The Ellipse is also the set of points satisfying the following
implicit equation: (x/aa)2 + (y/bb)2 = 1.

A geometric definition of the Ellipse, that can be used to
shape flower beds is:

An Ellipse is the set of points for which the sum
of the distances from two focal points is a con-
stant L equal to twice the semi-major axis length.

A gardener connects the two focal points by a cord of
length L, pulls the cord tight with a stick which then draws
the boundary of the flower bed with the stick. Another
version of this definition is:

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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An Ellipse is the set of points which have equal
distance from a circle of radius L and a (focal)
point inside the circle.

Both these definitions are illustrated in the program.
The normal to an ellipse at any point bisects the angle
made by the two lines joining that point to the foci. This
says that rays coming out of one focal point are reflected
off the ellipse towards the other focal point. Therefore one
can build elliptically shaped “whispering galleries”, where
a word spoken softly at one focal point can be heard only
close to the other focal point.

To add a simple proof we show that the tangent leaves the
ellipse on one side; more precisely, we show that for every
other point on the tangent the sum of the distances to the
two focal points F1, F2 is more than the length L of the
major axis. (In the display: F = F2.) Pick any point Q
on the tangent, join it to the two focal points and reflect
the segment QF in the tangent, giving another segment
QS. Now F1QS is a radial straight segment only if Q is
the point of tangency—otherwise F1QS is by the triangle
inequality longer than the radius F1S (of length L) of the
circle around F1.

The evolute of an ellipse, i.e., the curve enveloped by the
normals of the ellipse—see Action Menu: Draw osculating
circles with normals, is a generalized Astroid, it is less
symmetric than the true Astroid.

An Ellipse can also be obtained by a rolling construction:
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Inside a circle of radius aa another circle of radius r :=
hh = 0.5aa rolls and traces the Ellipse with a stick of
radius R := ii · r, see Plane Curves Menu: Circle and
select from the Action Menu: Show Generalized Cycloids.
The parametric equation resulting from this construction
is:

x(t) = (R + r) cos(t)
y(t) = (R− r) sin(t)

This is related to the visualization of the complex map
z → z + 1/z in Polar Coordinates, the image of the circle
of radius R is such an ellipse with r = 1/R.

Such rolling constructions are reached with the Plane Curves
Menu entry: Circle and then the Action Menu Draw Gen-
eralized Cycloids or with Epi- and Hypocycloids. Recall
that negative values of the rolling radius hh gives curves
on the outside, positive radii (hh < aa) on the inside of
the fixed circle.
Other rolling curves are:

Cycloid, Astroid, Deltoid, Cardioid, Limacon,
Nephroid, Epi- and Hypocycloids.

H.K.
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Parabola*

See also: Ellipse, Hyperbola, Conic Section and their ATOs,
and in the Category Surfaces see: Conic Sections and Dan-
delin Spheres

The usual parametric equations for the Parabola are
x(t) := t2/4p
y(t) := t,
where p = aa/4,
so the Parabola visualizes the graphs of the two functions
y(x) :=

√
4p · x and x(y) := y2/4p.

The vertical line x = −p is called the directrix and the
point (x, y) = (p, 0) is called focal point of the Parabola.
The distance from a point (x, y =

√
4p · x) on the Parabola

to the directrix is (x + p), and this is the same distance
as from (x, y =

√
4p · x) to the focal point (p, 0), because

(x− p)2 + y2 = (x + p)2.
The point (p, 0) is called ”focal point”, because light rays
which come in parallel to the x-axis are reflected off the
Parabola so that they continue to the focal point. This
fact is illustrated in the program. It gives the following
ruler construction of the Parabola:
Prepare the construction by drawing x-axis, y-axis, direc-
trix and focal point F. Then draw any line parallel to the
x-axis and intersect it with the directrix in a point S. The

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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line orthogonal to the connection SF and through its mid-
point is the tangent of the Parabola and intersects there-
fore the incoming ray in the point of the Parabola which
we wanted to find.

The same construction works for Ellipse and Hyperbola, if
the directrix is replaced by a circle of radius 2*a around
one focal point. The curve is the set of points which have
the same distance from this circle and the other focal point.

The Action Menu of the Parabola has an entry “Show
Normals Through Mouse Point”. This illustrates an un-
expected property of the Parabola. One may already be
surprised that at the intersection points of normals always
three normals meet. We know no other curve which is ac-
companied by such a net of normals. The surprise should
increase if one looks at the y-coordinates of the parabola
points from where three such intersecting normals origi-
nate: these y-coordinates add up to 0! In other words, the
intersection behaviour of the normals reflects the addition
on the y-axis.

The explanation of where this intersection property comes
from is quite interesting. The normals of the Parabola are
the tangents to its evolute, the semi-cubical parabola, a
singular cubic curve (see Cuspidal Cubic). So the intersec-
tion property of the parabola normals can be thought of
as defining an addition law for the evolute, and as such it
is a simpler limiting case of the addition law that exists on
any cubic curve.
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Hyperbola*

See also Parabola, Ellipse, Conic Sections and their ATOs.

The most common parametric equations for a Hyperbola
with semi-axes aa and bb are:
x(t) = ±aa cosh(t), y(t) = bb sinh(t), t ∈ R;
and another version is:
x(t) = aa/ cos(t), y(t) = bb sin(t)/ cos(t), t ∈ [0, 2π].
The corresponding implicit equation is:
(x/aa)2 − (y/bb)2 = 1.
The function graphs: {(x, y); y = 1/x + m · x} are also
Hyperbolae.
A geometric definition of the Hyperbola is:

A Hyperbola is the set of points for which the dif-
ference of the distance from two focal points
is constant.

Or:
A Hyperbola is the set of points which have the
same distance from a circle and a (focal) point
outside that circle.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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If one applies an inversion (x, y) → (x, y)/(x2 + y2) to a
right Hyperbola (i.e. aa = bb) then one obtains a Lemnis-
cate.

In the visualization of the complex map z → z + 1/z in
Polar Coordinates, the image of the radial lines are the
Hyperbolae:

x(R) = (R + 1/R) cosφ
y(R) = (R− 1/R) sinφ, R ∈ R.

And the image of the standard Cartesian Grid under the
complex map z →

√
z is a grid of two families of orthogonal

Hyperbolae.
(H.K.)
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Conic Sections, 2D construction*

See also Parabola, Ellipse, Hyperbola and their ATOs.

A cone of revolution (e.g., {(x, y, z);x2+y2 = m·z2}) is one
of the simplest surfaces. Its intersections with planes are
called conic sections. Apart from pairs of lines these conic
sections are Parabolae, Ellipses or Hyperbolae. These curves
have also other geometric definitions (e.g., The locus of
points having the same distance from a focal point and a
circle). See their Menu entries.

On the other hand, they are also more robust than these
definitions show: Photographic images of conic sections
are again conic sections; or in a completely different for-
mulation: The intersection of a plane and any “quadratic
cone”, i.e.,
{(x, y, z) | a · x2 + b · y2 + c · z2 + d · xy + e · yz = 0},
is not more complicated than planar sections of circular
cones but are the same old Parabolae, Ellipses or Hyper-
bolae as above. A special case of this robustness is the fact
that orthogonal projections of conic sections in 3-space are
again conic sections. This is illustrated in the program as

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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follows:

Interpret the illustration as if it showed level lines on a hik-
ing map. The equidist parallel lines are the level lines of a
sloping plane; the smaller the distance between these level
lines the steeper the plane. The equidistant concentric cir-
cles are the level lines of a circular cone, as for example an
ant lion would dig in sandy ground; without height num-
bers written next to the level lines we can of course not
decide whether the circular level lines represent a conical
mountain or a conical hole in the ground. We suggest that
the blue level line and the vertex of the cone are at height
zero and the other levels are higher up so that the cone is
a hole.

The intersection curve between plane and cone has then an
easy pointwise construction: Simply intersect level lines of
the same height on the two surfaces. (These are lines with
the same color in the program illustration.) This construc-
tion reveals a new geometric property of the intersection
curve on the map, of this conic section:

Take the ratio of the distances from a point on the
curve, (i) to the level line at height 0 of the plane
(called directrix) and (ii) to the vertex at height
zero of the cone (called focus). This ratio is the
same as the ratio of adjacent level lines of plane
and cone and therefore the same for all points of
this conic section.
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Conic Sections, Kepler orbits*

See also Parabola, Ellipse, Hyperbola and their ATOs.

For many properties of the conic sections a parametriza-
tion is not relevant. However, when Kepler discovered that
planets and comets travel on conic sections around the sun
then this discovery came with a companion: the speed on
the orbit is such that angular momentum is preserved. In
more elementary terms: the radial connection from the sun
to the planet sweeps out equal areas in equal times. With
the 3dfs demo we explain geometrically how this celestial
parametrization is connected with the focal properties of
conic sections. Here we give the algebraic explanation first.

An ellipse, parametrized as affine image of a circle and
translated to the left is

P (ϕ) := (a cosϕ− e, b sinϕ).

If we choose e :=
√

a2 − b2 then we have |P (ϕ)| = (a −
e cosϕ). This gives the connection with the oldest defini-
tion of an ellipse: The sum of the distances from P (ϕ) to
the two points (±e, 0) is 2a.

Next we compute the quantity A, equal to twice the area
swept out by the position vector P , and also the derivatives

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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of P and A:

A(ϕ) =
Z ϕ

0
det(P (ϕ), P 0(ϕ))dϕ,

P 0(ϕ) = (−a sinϕ, b cosϕ),

A0(ϕ) = b(a− e cosϕ),

and we denote the function inverse to A(ϕ) by Φ(A), so
that,

Φ(A(ϕ)) = ϕ, Φ0(A) =
1

b(a− e cosΦ)
.

Let us write Q to denote the position when expressed as a
function of A, i.e., Q(A) := P (Φ(A)). Now Kepler’s Sec-
ond Law says that A proportional to time, or equivalently
that A is the time in approriate units, so the velocity is
Q0(A) = P 0(Φ(A)) · Φ0(A), and the kinetic energy is:

K.E. =
1
2
Q0(A)2 =

a2 sin2 ϕ + b2 sin2 ϕ

2b2(a− e cosϕ)2

=
a2 − e2 cos2 ϕ

2b2(a− e cosϕ)2

=
(a + e cosϕ)

2b2(a− e cosϕ)

=
a

b2
· 1
a− e cosϕ

− 1
2b2

.

=
a

b2
· 1
|P (ϕ)| −

1
2b2

.
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Thus, in units where we take twice the swept out area as
the time, the potential energy can be read off by using the
law of energy consevation, i.e., the fact that the kinetic
energy plus the potential energy is constant. In fact, it
follows from this that the potential energy at orbit point
Q(A(ϕ)) = P (ϕ) is equal to:

− a

b2
· 1
|P (ϕ)| ,

which is the famous 1/r law for the potential energy.

Next, we present a geometric proof. The starting point is
the determination of the correct orbital speed by the prop-
erty that the product of the speed |v| with the distance p
of the tangent line from the center is the constant angu-
lar momentum, Kepler’s second law. Of course we can
illustrate such a fact only if we also represent the size of
velocities by the length of segments and we have to keep in
mind that segments which illustrate a length and segments
which illustrate a velocity are interpretated with different
units.
Recall the following theorem about circles: if two secants
of a circle intersect then the product of the subsegments of
one secant ist the same as the product of the subsegments
of the other secant.
This will be applied to the circle the radius of which is the
length 2a of the major axis. (The midpoint is the other
focus, not the sun.) The two secants intersect in the fo-
cus representing the sun: one secant is an extension of the
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major axis the other is perpendicular to the tangent line.
The subsegments of the first secant have the lengths 2a−2e
and 2a+2e, where 2e is the distance between the foci. The
subsegments of the second secant have one length 2p and
one labeled |v|.

2a

| v |

p

r

r

Kepler Ellipse with construction
of proper speed and potential.

The circle theorem says: (2a − 2e) · (2a + 2e) = 2p · |v|.
Since the left side is constant we can interprete the segment
labeled |v| as representing the correct orbital speed.

Now that we know at each point of the orbit the correct
speed we can deduce Newton’s 1/r-law for the gravita-
tional potential, if we use kinetic energy plus potential en-
ergy equals constant total energ. In the illustration we
have two similar right triangles, the small one has hy-
pothenuse = r and one other side = p, the big one has
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as hypothenuse a circle diameter of length 4a and the cor-
responding other side has length 2p + |v|. Now we use the
above const := (2a− 2e) · (2a + 2e) = 2p · |v| to eliminate
p from the proportion:

p : r = (2p + |v|) : 4a

This gives

2a/r = 1 + |v|/2p = 1 + v2/const.

Up to physical constants (units), v2 is the kinetic energy,
so that (again up to units) −1/r is the potential energy –
since such a potential makes kinetic plus potential energy
constant.

Another simple property of Kepler ellipses and hyperbo-
las is: Their velocity diagram, the so called hodograph, is
a circle. Usually one simply translates the velocity vec-
tor from the orbit point to the sun. In our picture we
see the velocity vector rotated by 90 degrees; indeed, it
ends on the circle. This leads to a geometric representa-
tion of the Runge-Lenz vector: In our picture we really see
the cross product of the (tangential) velocity vector with
angular momentum (a constant vector orthogonal to the
orbit plane). If we add to it a vector of constant length
2a and parallel to the position vector then we reach the
midpoint of our circle, the other focal point of the orbit
ellipse. This sum vector is, up to the constant negative
factor −(a− e)/2e the classical Runge-Lenz vector.
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Mathematically, the parabolic and hyperbolic Kepler orbits
allow similar derivations of the −1/r-potential, which we
will give next. Historically this played no role since the
non-repeating orbits could not be determined with enough
precision at the time.

Derivation of the −1/r-potential from a parabolic Kepler
orbit. Let in the picture (below) |p| be the distance from
the sun at (1/4, 0) to a tangent of a parabolic Kepler orbit
and let |v| be the orbital speed at that moment. Conser-
vation of angular momentum says p · |v| = const. Let ϕ be
the angle between the segment marked p and the vertical
axis; since the sun is at the focal point of the parabola
we have p · sinϕ = 1/4. This and the previous angular
momentum equation say that, up to a choice of unit for
velocity, we have:

Kepler speed: |v| = sinϕ,

Angular momentum: p · |v| = 1/4.

If we call r the distance to the planet, than we also have
p/r = sinϕ = |v|. Multiplication with the angular mo-
mentum gives

Kinetic energy:
1
2
|v|2 =

1
8r

,

Potential energy:
−1
8r

.
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r

p

 Sun = (1/4,0) 

 Planet = (a
2
,a) 

Derivation of the −1/r-potential from a hyperbolic Kepler
orbit. As before we call p the distance from the sun to
a tangent of the hyperbolic orbit and v the speed at that
orbit point.

r
p

p

v - 2p

T

Sun = (e,0) (-e,0) 

(-e-2a,0) 

 Planet = (a*cosh x, b*sinh x) 

Conservation of angular momentum says p·|v| = const. We

22



use the property of the circle (radius 2a) about products
of segments on secants (which intersect at the sun S):

2p · |T − S| = (2e− 2a)(2e + 2a) = 4b2. Therefore,
again up to the unit for velocity, we have identified the
correct

Kepler velocity: v = |S − T |.

Finally, similar triangles give:
p/r = (v − 2p)/4a or 4a/r = v/p− 2,

and elimination of p with the angular momentum, i.e. with
1/p = v/2b2, shows that kinetic energy plus a radial func-
tion are constant – thus identifying the 1/r-potential:

4ab2/r = v2/2− 2b2.

Additional properties: As in the case of elliptical orbits
we see that the hodograph is a circle because the velocity
vector, rotated by 90 degrees, ends on the circle which we
used for the construction of the hyperbola. And if we add
to the endpoint of this rotated velocity a vector parallel
to the position vector and of constant length 2a then we
reach the midpoint of the circle, the other focal point of the
orbit. The constant(!) difference vector between the two
focal points, the geometric Runge-Lenz vector, differs from
the common definition by the constant factor (e− a)/2e.
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Nephroid of Freeth*

This curve, first described 1879, is the member aa = 0 in
the following family of curves:

x(t) = (1− aa · sin(t/2)) cos(t)
y(t) = (1− aa · sin(t/2)) sin(t)

The default morph starts at aa = 0 with a circle, traversed
twice. For small aa > 0 one double point develops. At
aa = 1 the curve reaches the origin with a cusp. This
cusp deforms into a second double point. At aa =

√
2 the

two tangents of the double point coincide and are vertical.
This point of double tangency deforms into three double
points. The Nephroid of Freeth is reached at aa = 2, when
two of the mentioned three double points coincide with the
earliest one to form a triple intersection.
Apart from being in a simple family, which shows all these
singularities of curves, we learnt from

www.2dcurves.com/derived/strophoid.html
that the Nephroid of Freeth has the curious property that
one can construct a regular sevengon with it: The vertical
tangent at the triple intersection meets the curve again in
two points whose radius vectors enclose the angle 3π/7.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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Sine Curve text is not completed.
HK
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Catenary*

The catenary is also known as the chainette, alysoid, and
hyperbolic cosine. It is defined as the graph of the function
y = a cosh(x/a). (Recall cosh(x) := (ex + e−x)/2, where
e = 2.71828 . . . is the base of the natural logarithms.)

The Catenary

The catenary is the shape an ideal string takes when hang-
ing between two points. By “ideal” is meant that the string
is perferctly flexible and inextensible, has no thickness, is
of uniform density. In other words the catenary is a mathe-
matical abstraction of the shape of a hanging string, and it
closely approximates the shapes of most hanging string-like

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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objects we see, such as ropes, outdoor telecommunication
wires, necklaces, chains, etc. For any particular hanging
string, we will need to choose the parameter a correctly to
model that string.

Notice that except for scaling there is really only a sin-
gle catenary. That is, the scaling transformation (x, y) 7→
(ax, ay) maps the graph of y = a cosh(x/a) onto the graph
of y = cosh(x). The scaling transformation just amounts
to a change in the choice of units used to measure distances.

History

Galileo was the first to investigate the catenary, but he
mistook it for a parabola. James Bernoulli in 1691 ob-
tained its true form and gave some of its properties. [cf.,
Robert C. Yates, 1952]

Galileo’s suggestion that a heavy rope would hang in the
shape of a parabola was disproved by Jungius in 1669, but
the true shape of the catenary, was not found until 1690–
91, when Huygens, Leibniz and John Bernoulli replied to a
challenge by James Bernoulli. David Gregory, the Oxford
professor, wrote a comprehensive treatise on the ‘catenar-
ian’ in 1697. The name was first used by Huygens in a
letter to Leibniz in 1690. [cf., E.H.Lockwood, 1961].

[By the way, it is true that if you carefully weight a hanging
string so that their is equal weight of string per unit of
horizontal distance (rather than per unit of length) then
its shape will be a parabola, so Gallileo wasn’t so far from
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the truth.]

The Catenary has numerous interesting properties.

Properties of the Catenary

Caustics

Parallel rays above the exponential curve

The Catacaustic of the exponential curve (x, ex) with light
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rays from above and parallel to the y axes is the catenary.

The exponential function ex has interesting properties it-
self. It is the only function who agrees with its derivative.

Involute

The involute of catenary starting at the vertex is the curve
tractrix. (In 3DXM, the involutes of a curve can be shown
in the menu Action→ Show Involutes.) Note that all invo-
lutes are parallel curves of each other. This is a theorem.
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Evolute

The evolute of the catenary is also the tractrix. (In 3DXM,
this can be seen from the menu Action→ Show Osculating
Circles.)
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Radial and Kampyle of Eudoxus

The radial of the catenary is the Kampyle of Eudoxus. In
the figure above, the blue curve is half the catenary. The
green curve is the Kampyle of Eudoxus. The rainbow lines
are radii of osculating circles and their parallels through 0.

The Kampyle of Eudoxus is defined as the parametric curve
x = − cosh(t) sinh(t), y = cosh(t).
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Catenoid

If you rotate the graph of x = cosh(y) about the y-axis,
the resulting surface of revolution is a minimal surface,
called the Catenoid. It is one endpoint of an interesting
morph you can see in 3DXM, by switching to the Sur-
face category, choosing Helicoid-Catenoid from the Surface
menu, and then choosing Morph from the Animate menu.
If you look closely you will see that during this morph dis-
tances and angles on the surface are preserved. See About
This Object... in the Documentation menu when Helicoid-
Catenoid is selected for a discussion of this.
XL.
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On Curves Given By Their Support Function*

This note is about smooth, closed, convex curves in the
plane and how to define them in terms of their so-called
Minkowski support function h. For quick reference we first
show how, in 3D-XplorMath, h can be modified by speci-
fying parameters. Then we begin with a more general class
of geometric objects, namely convex bodies.

1. Parameter Dependent Formulas
In 3D-XplorMath, the support function h is given in terms
of Fourier summands:

h(ϕ) := aa + bb cos(ϕ) + cc cos(2ϕ)+
dd cos(3ϕ) + ee cos(4ϕ) + ff cos(5ϕ).

In terms of this function we define the following curve:

c(ϕ) := h(ϕ) ·
µ

cos(ϕ)
sin(ϕ)

∂
+ h0(ϕ) ·

µ
− sin(ϕ)
+ cos(ϕ)

∂
.

Differentiation shows that c is given in terms of its unit
normal and tangent vectors and the function h:

c0(ϕ) = (h + h00)(ϕ) ·
µ
− sin(ϕ)
+ cos(ϕ)

∂
.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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One obtains curves with nonsingular parametrization (|c0| >
0) if aa is choosen large enough. And since h(ϕ) equals the
scalar product between c(ϕ) and the unit normal n(ϕ) =
(cos(ϕ), sin(ϕ)) one has a simple geometric interpretation:
h(ϕ) is the distance of the tangent at c(ϕ) from the origin.

2. Background And Explanations
A convex body in Rn is a compact subset B having non-
empty interior and such that it includes the line segment
joining any two of its points. A hyperplane H in Rn is
called a supporting hyperplane of B if it contains a point
of B and if B is included in one of the two halfspaces defined
by H. It is not difficult to show that every boundary point
of B lies on at least one supporting hyperplane, and that
B is the intersection of all such halfspaces.

A smooth, closed, planar curves c is called convex if its
tangent at each point intersects c only at that one point.
The complement in R2 of such a curve has a single bounded
component, the interior of the curve, and one unbounded
component, its exterior . The curve is the boundary of its
interior, and we denote by B the curve together with its
interior. It is easy to see that B is a convex body in R2, as
defined above, and in fact the tangent line at any point of
c is the unique supporting hyperplane (= line!) contain-
ing that point. (There are of course more general planar
convex bodies. For example if P is a closed polygon in
R2 together with its interior, then P is a convex body, but
there are infinitely many supporting lines through each ver-

34



tex, while the supporting line containing an edge contains
infinitely many points.)

Now let O be some interior point of c and take O as the
origin of a cartesian coordinates by fixing a ray from O
as the positive x-axis. With respect to these coordinates,
at each point p on c the outward directed unit normal
at p will have the form n(ϕ) = (cos(ϕ), sin(ϕ)) where
ϕ = ϕ(p) satisfies 0 ≤ φ ≤ 2π. If we as usual think of
S1 as the interval [0, 2π] with endpoints identified, then it
can be shown that the map p 7→ ϕ(p) is a smooth one-
to-one map of c with S1, so that the inverse map gives a
parametrization c(ϕ) of the curve by S1. (This just says
that given any direction in the plane, there is a unique
point p on c where the outward normal has that direction,
and the point p varies smoothly with the direction.)

The Minkowski support function for the curve c is the func-
tion h defined on S1 by letting h(ϕ) be the distance from
the origin of the line of support (or tangent) through c(ϕ),
that is h(ϕ) := n(ϕ) · c(ϕ), the scalar product of c(ϕ) and
n(ϕ). From this definition it is easy to reconstruct the
curve in terms of its support function as in part 1.

3. Things To Observe
Recall one has in any parametrization the curvature for-
mula

n0(t) = ∑(t)c0(t),
which in the present case reduces to:

1/∑(ϕ) = h(ϕ) + h00(ϕ) = |c0(ϕ)|.
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Clearly aa has to be large enough to make ∑ positive and
the parametrization nonsingular. Adding a linear combi-
nation of cos(ϕ) and sin(ϕ) to the support function cor-
responds to a change of only the origin, the shape of the
curve stays the same. The bb cos(ϕ)-term in the support
function is therefore not really necessary, but one can use
it to see how the parametrization of the curve changes.

The cos-terms in even multiples of ϕ make up the even
part (h(ϕ) + h(ϕ + π))/2 of h. The origin is the midpoint
of curves with even support function. If h is odd except
for the constant term, i.e.,

h(ϕ) = aa + (h(ϕ)− h(ϕ + π))/2,
then one obtains curves of constant width w where:

w = h(ϕ) + h(ϕ + π) = 2 aa.
The default curve in 3D-XplorMath is such a curve of con-
stant width and the default morph shows a family of such
curves. We emphasize the width of our curves by drawing
them together with their pairs of parallel tangents. Since
the (non-)constancy of the distance between these paral-
lel tangents is difficult to see we have added a circle of
the same width (= diameter). One cannot easily recog-
nize how many extrema the curvature ∑(ϕ) has. To see it
clearly we recommend selecting the entry Show Osculating
Circles from the Action Menu, since the evolute has a cusp
at every extremal value of ∑.
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Tractrix*

The Tractrix is a curve with the following nice interpre-
tation: Suppose a dog-owner takes his pet along as he
goes for a walk “down” the y-axis. He starts from the
origin, with his dog initially standing on the x-axis at a
distance aa away from the owner. Then the Tractrix is the
path followed by the dog if he “follows his owner unwill-
ingly”, i.e., if he constantly pulls against the leash, keeping
it tight. This means mathematically that the leash is al-
ways tangent to the path of the dog, so that the length of
the tangent segment from the Tractrix to the y-axis has
constant length aa. Parametric equations for the Tractrix
(take bb = 0) are:

x(t) = aa · sin(t)(1 + bb)
y(t) = aa · (cos(t)(1 + bb) + ln(tan(t/2))).

The curves obtained for bb =/ 0 are generated by the same
kinematic motion, except that a different point of the mov-
ing plane is taken as the drawing pen. See the default
Morph.
The Tractrix has a well-known surface of revolution, called
the Pseudosphere, Namely, rotating it around the y-axis
gives a surface with Gaussian curvature -1. This means

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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that the Pseudosphere can be considered as a portion of
the Hyperbolic Plane. The latter is a geometry that was
discovered in the 19th century by Bolyai and Lobachevsky.
It satisfies all the axioms of Euclidean Geometry except the
Axiom of Parallels. In fact, through a point outside a given
line (= geodesic) there are infinitely many lines that are
parallel to (i.e., do not meet) the given line.
There are many connections, sometimes unexpected, be-
tween planar curves. For the Tractrix select: Show Oscu-
lating Circles And Normals. One observes a Catenary
(see another entry in the curve menu) as the envelope of
the normals.
H.K.
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Cissoid and Strophoid*

c(t) := 2aa

µ
t(t2 − bb)
(1 + t2)

,
bb

2aa
+

t2 − bb

(1 + t2)

∂
3DXM Family:

The additive constant bb/2aa in the y-coordinate has the
effect that the drawing mechanism is the same for the
whole family, try the default Morph in the Animate Menu.

History
Diocles ( 250 – ∼100 BC) invented the Cissoid to solve the
doubling of the cube problem (also know as the the Delian
problem). The name Cissoid (ivy-shaped) derives from the
shape of the curve. Later the method used to generate this
curve was generalized, and we call all curves generated in
a similar way Cissoids. Newton (see below) found a way
to generate the Cissoid mechanically. The same kinematic
motion with a different choice of the drawing pen generates
the (right) Strophoid, formulas below.
From Thomas L. Heath’s Euclid’s Elements translation
(1925) (comments on definition 2, book one):

This curve is assumed to be the same as that by
means of which, according to Eutocius, Diocles in
his book On Burning-Glasses solved the problem
of doubling the cube.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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From Robert C. Yates’ Curves and their properties (1952):
As early as 1689, J. C. Sturm, in his Mathesis
Enucleata, gave a mechanical device for the con-
structions of the Cissoid of Diocles.

From E.H.Lockwood A book of Curves (1961):
The name cissoid (“Ivy-shaped”) is mentioned by
Geminus in the first century B.C., that is, about a
century after the death of the inventor Diocles. In
the commentaries on the work by Archimedes On
the Sphere and the Cylinder, the curve is referred
to as Diocles’ contribution to the classic prob-
lem of doubling the cube. ... Fermat and Rober-
val constructed the tangent (1634); Huygens and
Wallis found the area (1658); while Newton gives
it as an example, in his Arithmetica Universalis,
of the ancients’ attempts at solving cubic prob-
lems and again as a specimen in his Enumeratio
Linearum Tertii Ordinis.

1 Description

The Cissoid of Diocles is a special case of the general cis-
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soid. It is a cissoid of a circle and a line tangent to the
circle with respect to a point on the circle opposite to the
tangent point. Here is a step-by-step description of the
construction:

1. Let there be given a circle C and a line L tangent to
this circle.

2. Let O be the point on the circle opposite to the tangent
point.

3. Let P1 be a point on the circle C.
4. Let P2 be the intersection of line [O,P1] and L.
5. Choose Q on line [O,P1] with dist[O,Q] = dist[P1, P2].
6. The locus of Q (as P1 moves on C) is the cissoid of

Diocles.
An important property to note is that Q and P1 are sym-
metric with respect to the midpoint of the segment [O,P2].
Call this midpoint M. We can reflect every element in the
construction around M, which will help us visually see
other properties.

2 Formula derivation

Let the given circle C be centered at (1/2, 0) with radius
1/2. Let the given line L be x = 1, and let the given point
O be the origin. Let P1 be a variable point on the circle,
and Q the tracing point on line [O,P1]. Let the point (1, 0)
be A. We want to describe distance r = dist[O,Q] in terms
of the angle θ = [A,O,P1]. This will give us an equation

41



for the Cissoid in polar coordinates (r, θ). From elementary
geometry, the triangle [A,O,P1] is a right triangle, so by
trignometry, the length of [O,P1] is cos(θ). Similarly, tri-
angle [O,A,P2] is a right triangle and the length of [O,P2]
is 1

cos(θ) . Since dist[O,Q] = dist[O,P2] − dist[O,P1], we
have dist[O,Q] = 1

cos(θ) − cos(θ). Thus the polar equation
is r = 1

cos(θ) − cos(θ). If we combine the fractions and
use the identity sin2 +cos2 = 1, we arive at an equivalent
form: r = sin(θ) tan(θ).

3 Formulas for the Cissoid and the Strophoid
In the following, the cusp is at the origin, and the asymp-
tote is x = 1. (So the diameter of the circle is 1 (= aa in
3DXM).)
Parametric: (sin2(t), sin2(t) tan(t)) − π/2 < t < π/2.

µ
t2

(1 + t2)
,

t3

(1 + t2)

∂
−1 < t < 1Parametric:

µ
t2 − 1

(1 + t2)
,
t(t2 − 1)
(1 + t2)

∂
−1 < t < 1Strophoid:

Polar: r = 1
cos(θ) − cos(θ) − π/2 < t < π/2.

Cissoid: y2(1−x) = x3, Strophoid: y2(1−x) = x2(1+x).

The Cissoid has numerous interesting properties.

4 Properties
4.1 Doubling the Cube
Given a segment [C,B], with the help of the Cissoid of
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Diocles we can construct a segment [C,M ] such that
dist[C,M ]3 = 2 ∗ dist[C,B]3. This solves the famous dou-
bling the cube problem.

Step-by-step description:
1. Given two points C and B.
2. Construct a circle c1, centered

on C and passing through B.
3. Construct points O and A on the

circle such that line [O,A] is per-
pendicular to line [C,B]

4. Construct a cissoid of Diocles us-
ing circle c1, tangent at A, and
pole at O.

5. Construct point D such that B
is the midpoint of segment[C,D].

6. Construct line[A,D]. Let the in-
tersection of cissoid and line[A,D]
be Q. (The intersection cannot
be found with Greek Ruler and
Compass. We assume it is a given.)

7. Let the intersection of line [C,D]
and line [O,Q] be M .

8. dist[C,M ]3 = 2 · dist[C,D]3.

This can be proved trivially with
analytic geometry.
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4.2 Diocles’ Construction

By some modern common accounts
(Morris Kline, Thomas L. Heath),
here’s how Diocles constructed the
curve in his book

On Burning-Glasses:
Let AB and CD be perpendicular
diameters of a circle. Let E be a
point on arc[B,C], and Z be a point
on arc[B,D], such that BE, BZ are
equal. Draw ZH perpendicular to
CD. Draw ED. Let P be intersec-
tion[ZH,ED]. The cissoid is the lo-
cus of all points P determined by all
positions of E on arc[B,C] and Z on
arc[B,D] with arc[B,E]=arc[B,Z].
(The portion of the curve that lies
outside of the circle is a later gen-
eralization).

In the curve, we have CH/HZ=HZ/HD=HD/HP. Thus
HZ and HD are two mean proportionals between CH and
HP. Proof: taking CH/HZ=HZ/HD, we have CH ∗HD =
HZ2. triangle[D,C,Z] is a right triangle since it’s a trian-
gle on a circle with one side being the diameter (elemen-
tary geometry). We know an angle[D,C,Z] and one side
distance[D,C], thus by trignometry of right angles, we can
derive all lengths DZ, CZ, and HZ. Substituting the results
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of computation in CH ∗ HD = HZ2 results an identity.
Similarly, we know length HP and find HZ/HD=HD/HP
to be an identity.
4.3 Newton’s Carpenter’s Square and Tangent

Newton showed that Cissoid of Diocles and the right Stro-
phoid can be generated by sliding a right triangle. The
midpoint J of the edge CF draws the Cissoid, the vertex F
the Strophopid. This method also easily proves the tangent
construction.

Step-by-step description:
1. Let there be two distinct fixed points B and O, both on

a given line j. (distance[B,O] will be the radius of the
cissoid of Diocle we are about to construct.)

2. Let there be a line k passing O and perpendicular to j.
3. Let there be a circle centered on an arbitrary point C

on k, with radius OB.
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4. There are two tangents of this circle passing B, let the
tangent points be E and F.

5. Let I be the midpoint between E and the center of the
circle. Similarly, let J be the midpoint between F and
the center of the circle.

6. The locus of I and J (as C moves on k) is the cissoid
of Diocles and a line. Also, the locus of E and F is the
right strophoid.

Tangent construction for Cissoid and Strophoid: Think of
triangle[C,F,B] as a rigid moving body. The point C moves
in the direction of vector[O,C], and point B moves in the
direction of vector[B,F]. The intersection H (not shown)
of normals of line[O,C] and line[B,F] is its center of rota-
tion. J is the point tracing the Cissoid and is also a point
on the triangle, thus HJ is normal to the Cissoid. For
the Strophoid change the last sentence: Since the tracing
point F is a point on the triangle, thus HF is normal to
the Strophoid.
In 3D-XploreMath, this construction is shown automati-
cally when Cissoid is chosen from the Plane Curve menu,
just after the curve is drawn (or when it is redrawn by
choosing Create from the Action menu or typing Command-
K). In the Action Menu switch between Cissoid and Stro-
phoid. Hold down the option key to slow the anima-
tion, hold down Control to reverse direction, and press
the spacebar to pause.
In the animation, the tangent and normal are shown as

46



blue. The line from the critical point, from the so called
momentary fixed point of the motion, is normal to the
curve. This point is the intersection of the green lines; one
of them is a vertical drop, the other perpendicular to the
red line.

4.4 Pedal and Cardioid

The pedal of a cissoid of Diocles with respect to a point P
is the cardioid. If the cissoid’s asymptote is the line y = 1
and its cusp is at the origin, then P is at {0, 4}. It follows
by definition, the negative pedal of a cardioid with respect
to a point opposite its cusp is the cissoid of Diocles.

47



4.5 Negative Pedal and Parabola

The pedal of a parabola with respect to its vertex is the
cissoid of Diocles. (and then by definition, the negative
pedal of a cissoid of Diocles with respect to its cusp is a
parabola.)

4.6 Inversion and Parabola

The inversion of a cissoid of Diocles at cusp is a parabola.
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4.7 Roulette of a Parabola
Let there be a fixed parabola. Let there be an equal
parabola that rolls on the given parabola in such way that
the two parabolas are symmetric to the line of tangency.
The vertex of the rolling parabola traces a cissoid of Dio-
cles.
XL.
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Conchoid *

3D-XplorMath parametrization:

r =
bb

cos t
+ aa, x = r · cos t, y = r · sin t.

History

According to common modern accounts, the conchoid of
Nicomedes was first conceived around 200 B.C by Nicomedes,
to solve the angle trisection problem. The name conchoid is
derived from Greek meaning “shell”, as in the word conch.
The curve is also known as cochloid.

From E. H. Lockwood (1961):
The invention of the ‘mussel-shell shaped’ conchoid
is ascribed to Nicomedes (second century B.C.) by
Pappus and other classical authors; it was a fa-
vorite with the mathematicians of the seventeenth
century as a specimen for the new method of an-
alytical geometry and calculus. It could be used
(as was the purpose of its invention) to solve the
two problems of doubling the cube and of trisect-
ing an angle; and hence for every cubic or quartic
problem. For this reason, Newton suggested that
it should be treated as a ‘standard’ curve.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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Description

The Conchoid of Nicomedes is a one parameter family of
curves. They are special cases of a more general conchoid
construction, being the conchoids of a line.

Step-by-step explanation:
1. Given a line `, a point O not on `, and a distance k.
2. Draw a line m through O and any point P on `.
3. Mark points Q1 and Q2 on m such that

distance[Q1, P ] = distance[Q2, p] = k.

4. The locus of Q1 and Q2 as P varies on ` is the con-
choid of Nicomedes.

The point O is called the pole of the conchoid, and the line
` is called its directrix . It is an asymptote of the curve.

The following figures shows the curve family. The pole is
taken to be at the origin, and directrix is y = 1. The figure
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on top has constants k from −2 to 2. The one below has
constants k from −100 to 100.

Formulas

Let the distance between pole and line be b, and the given
constant be k. The curve has only the one parameter k,
because for a given b, all families of the curve can be gen-
erated by varying k (they differ only in scale). (Similarly,
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we could use b as the parameter.) In a mathematical con-
text, we should just use b = 1, however, it is convenient to
have formulas that have both b and k. Also, for a given k,
the curve has two branches. In a mathematical context, it
would be better to define the curve with a signed constant
k corresponding to a curve of only one branch. We will
be using this intepretation of k. In this respect, the con-
choid of Nichomedes is then two conchoids of a line with
constants k and −k.

The curve with negative offset can be classified into three
types: if b < k there is a loop; if b = k, a cusp; and if b > k,
it is smoothly imbedded. Curves with positive offsets are
always smooth.

The following are the formulas for a conchoid of a line
y = b, with pole O at the origin, and offset k.

Polar: r = b/ sin(θ) + k, −π/2 < θ < π/2.

This equation is easily derived: the line x = b in polar
equation is r = b/ cos θ, therefore the polar equation is
r = b/ cos(θ)+k with −π/2 < θ < π/2 for a signed k (i.e.,
describing one branch.). Properties of cosine show that as
θ goes from 0 to 2π, two conchoids with offset ±|k| results
from a single equation r = b/ cos(θ) + k. To rotate the
graph by π/2, we replace cosine by sine.

Parametric:
(t + (kt)/

√
b2 + t2, b + (bk)/

√
b2 + t2), −1 < t < 1.

If we replace t in the above parametric equation by b tan(t),
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we get the form:

(k +
b

cos(t)
) · (sin(t), cos(t)),

−π

2
< t <

3π
2

, t 6= π

2
.

For conchoids of a line with positive and negative offsets k
and pole at the origin, we have the quartic

Implicit Cartesian equation: (x2 + y2)(y − b)2 = k2y2.

If k < b, the point at the origin is an isolated point.
If k < 0 and b < |k|, the conchoid has a loop with area
(b
√

k2 − b2 − 2bk ln((k +
√

k2 − b2)/b) + k2 arccos(b/k)).
The area between any conchoid of a line and its asymptote
is infinite.

Tangent Construction
Look at the conchoid tracing
as a mechanical device, where
a bar line [O,P ] slides on a
line at P and a fixed joint
O. The point P on the bar
moves along the directrix, and
the point at O moves in the
direction of the vector [O,P ].
We know the direction of mo-
tion of the bar at the points
O and P at arbitrary time.
The intersection of normals to these directions form the in-
stantaneous center of rotation N . Since the tracing points

54



Q1 and Q2 are parts of the apparatus, N is also their cen-
ter of rotation and therefore line [N,Q1] and line [N,Q2]
are the curve’s normals.

Angle Trisection
The curve can be used to solve the Greek Angle Trisection
problem. Given an acute angle AOB, we want to construct
an angle that is 1/3 of AOB, with the help of the conchoid
of Nicomedes.

Steps: Draw a line m intersecting segment [A,O] and per-
pendicular to it. Let D be intersection of m and the line
[A,O], L the intersection of m and the line [B,O]. Sup-
pose we are given a conchoid of Nicomedes, with pole at
O, directrix m, and offset 2 · distance[O,L]. Draw a line `
intersecting L and perpendicular to m. Let C be an inter-
section of the curve and `, the one on the opposite side of
the pole.

Theorem. angle[A,O,B] = 3 · angle[A,O,C].
Proof:
<) [A,O,C] = <) [O,C,L]
because the line [O,C]
cuts parallel lines. Let:
q be the line [O,C],
N := m ∩ q,
M midpoint of [N,C],
k := distance[O,L].
By our construction,
.
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distance[N,M ] = distance[M,C] = k. Since NLC is a
right triangle, we see that MN , ML, MC, and OL all
have the same length, thus triangle [M,L,C] and triangle
[M,L,N ] are isosceles, and it follows that <) [N,M,L] =
2·<) [M,C,L]. Since distance[O,L] = distance[M,L], trian-
gle [M,L,O] is also isosceles, and thus its two base angles
are equal. This shows that an angle equal to <) [A,O,C] is
1/3 an angle equal to <) [A,O,B].

The essential point where the conchoid makes the trisec-
tion possible is in the construction of the point C on ` such
that distance[N,C] = 2 distance[O,L], where N is the in-
tersection of m and the line [O,C]. Note that for each
new angle to trisect, a new conchoid is needed. This is in
contrast to some other trisectrixes such as the quadratrix,
where all angles can be trisected once the curve is given.

The conchoid can also be used to solve the classic problem
of doubling the cube.
XL.
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Lemniscate *

Parametrized family in 3DXM: r := aa/(1 + sin2(t)),
x := r cos(t)

°
1 + (1− tan(bb)) cos(t)/2

¢
,

y := r sin(t)
°
cos(t) + 1− tan(bb)

¢
.

The Lemniscate is a figure-eight curve with a simple me-
chanical construction attributed to Bernoulli: Choose
two ’focal’ points F1, F2 at distance L, then take three
rods, one of length L, two of length L/

√
2. The short ones

can rotate around the focal points and they are connected
by the long one with joints which allow rotation. This ma-
chine has one degree of freedom and the midpoint of the
long rod traces out the Lemniscate when one of the short
rods is rotated. Other drawing pens can be chosen: set
bb =/ π/4, see the default Morph (it scales aa = aa(bb)).
Mechanical constructions of curves often come with sim-
ple tangent constructions. We imagine that a plane is
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attached to the long rod. Then every point of this plane
traces out a curve when the rods move. At each moment
the endpoints of the long rod move orthogonal to the short
rods (namely on circles around the focal points). This says
that the straight extensions of the short rods (green) inter-
sect in the momentary center of rotation. At this moment
every point of the plane rotates around this center so that
the tangent of each point’s orbit is orthogonal to its con-
nection with the momentary center of rotation. (Compare
the other mechanically constructed curves.)
The Lemniscate has the implicit equation:

(x2 + y2)2 = x2 − y2.
Divide this by r2 := x2 + y2 to get the polar form:

r2 = cos(φ)2 − sin(φ)2.
Parametrizations are not unique, here is one:

x(t) := cos(t)/(1 + sin(t)2)
y(t) := sin(t) · cos(t)/(1 + sin(t)2).

The points F1, F2 := ±1/
√

2 are called Focal points of the
Lemniscate because of the special property:

|P − F1| · |P − F2| = |F1 − F2|2/4.

If one takes the complex square root of a circle which
touches the y-axis from the right at 0 then one also ob-
tains a Lemniscate. In the Conformal Category, choose
z →

√
z, and then in the Action Menu, select Choose Cir-

cle by Mouse, and create a circle that is tangent to the
y-axis at 0.)
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The inversion map: (x, y) 7→ (x, y)/(x2 + y2) often trans-
forms some interesting curve into another interesting curve.
And indeed, the Lemniscate, with the above parametriza-
tion, is transformed by inversion into the curve

x = 1/ cos(t), y = sin(t)/ cos(t).

Since x2−y2 = 1, this is a hyperbola, so we could also have
obtained the Lemniscate from the standard hyperbola by
inversion.
We note that not every figure-eight curve is a Lemniscate,
another figure-eight is obtained by the simpler parametriza-
tion:

x(t) := cos(t)
y(t) := sin(t) · cos(t),

which has the implicit equation y2 = x2(1− x2).
H.K.
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Clothoid *

The Clothoid, also called Spiral of Cornu, is a curve whose
curvature is equal to its arclength. It has the parametric
formula:

µZ t

0
cos(x2/2) dx,

Z t

0
sin(x2/2) dx)

∂
.

Discussion
If a plane curve is given by a parametric formula (f(t), g(t)),
then the length of the part corresponding to a parameter
interval [a, t] is s(t) =

R t
a

p
f 0(τ)2 + g0(τ)2 dτ . If we ap-

ply this formula to the Clothoid we see that the arclength
corresponding to the interval [0, t] is s(t) =

R t
0 1 dt = t, so
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that the parameter t is precisely the (signed!) arclength
measured along the curve from its midpoint, (0, 0).
Next, recall that the curvature ∑ of a plane curve is de-
fined as the rate of change (with respect to arclength) of
the angle θ that its tangent makes with some fixed line
(which we can take to be the x-axis). And since the slope
dy
dx of the curve is tan(θ), and by the chain rule dy

dx =
(dy/dt)/(dx/dt) = g0

f 0 , we see that θ(t) = arctan(g0(t)/f 0(t)).
So if we assume that parameter t is arclength, then using
the formulas for the derivative of the arctangent and of a
quotient, we see that:

∑(t) = θ0(t) = −g0(t)f 00(t) + f 0(t)g00(t),

(where we have ignored the denominator, since parame-
terization by arclength implies that it equals unity). Ap-
plying this to the Clothoid, we obtain ∑(t) = t. Since the
arclength function is also t, this shows that the Clothoid
is indeed a curve whose curvature function is equal to its
arclength function.

The Fundamental Theorem of Plane Curves
Next let’s look at this question from the other direction,
and also more generally. Suppose we are given a function
∑(t). Can we find a plane curve parameterized by arclength
(f(t), g(t)) such that ∑ is its curvature function? Recall
from above that dθ

dt = ∑, and of course dx
dt = f 0(t) and

dy
dt = g0(t). Now, since (dx

dt )2 + (dy
dt )2 = 1, while dy

dt /dx
dt =

dy/dx = tan(θ), it follows from elementary trigonometry
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that dx
dt = cos(θ) while dy

dt = sin(θ). Thus we have the fol-
lowing system of three differential equations for the three
functions θ(t), f(t), and g(t):

θ0(t) = ∑(t), f 0(t) = cos(θ(t)), g0(t) = sin(θ(t)).

The first equation is solved by θ(τ) = θ0 +
R τ
0 ∑(σ) dσ, and

substituting this in the other two equations, we find that
the general solutions for f and g are given by:

f(t) = x0 +
Z t

0
cos(θ0 +

Z τ

0
∑(σ) dσ) dτ

g(t) = y0 +
Z t

0
sin(θ0 +

Z τ

0
∑(σ) dσ) dτ.

This is an elegant explicit solution to our question! It
shows that not only is there a solution to our question (say
the one obtained by setting x0, y0 and θ0 all equal to zero),
but also that the solution is unique up to a translation (by
(x0, y0)) and a rotation (by θ0), that is unique up to a
general rigid motion.
This fact has a name—it is called The Fundamental The-
orem of Plane Curves. It tells us us that most geometric
and most economical descriptions of plane curves is not via
parametric equations, which have a lot of redundancy, but
rather by the single function ∑ that gives the curvature as
a function of arclength.

Exercise Take ∑(t) = t and check that the above formulas
give the parametric equations for the Clothoid in this case.
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Back to the Clothoid

We close with a few more details about the Clothoid. First,
here is a plot of the integrand sin(x2/2):

and next a plot of its indefinite integral,
R t
0 sin(x2/2) dx,

the so-called Fresnel integral:

From this plot we see that the y-coordinate oscillates. Its
limit as t goes to infinity is

√
π/2, from which we see

that the centers of the two spirals of the Clothoid are at
±(
√

π/2,
√

π/2).

XL & RSP.
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Archimedean Spirals *

An Archimedean Spiral is a curve defined by a polar equa-
tion of the form r = θa. Special names are being given for
certain values of a. For example if a = 1, so r = θ, then it
is called Archimedes’ Spiral.

Archimede’s Spiral

Formulas in 3DXM:

r(t) := taa, θ(t) := t,
Default Morph:

−1 ≤ aa ≤ 1.25.

For a = −1, so r = 1/θ,
we get the reciprocal (or
hyperbolic) spiral:

Reciprocal Spiral

* This file is from the 3D-XplorMath project. Please see:
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The case a = 1/2, so r =
√

θ, is called the Fermat (or
hyperbolic) spiral.

Fermat’s Spiral

While a = −1/2, or r = 1/
√

θ, it is called the Lituus:

Lituus
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In 3D-XplorMath, you can change the parameter a by go-
ing to the menu Settings → Set Parameters, and change
the value of aa. You can see an animation of Archimedean
spirals where the exponent a = aa varies gradually, be-
tween −1 and 1.25. See the Animate Menu, entry Morph.

The reason that the parabolic spiral and the hyperbolic
spiral are so named is that their equations in polar coor-
dinates, rθ = 1 and r2 = θ, respectively resembles the
equations for a hyperbola (xy = 1) and parabola (x2 = y)
in rectangular coordinates.

The hyperbolic spiral is also called reciprocal spiral be-
cause it is the inverse curve of Archimedes’ spiral, with
inversion center at the origin.

The inversion curve of any Archimedean spirals with re-
spect to a circle as center is another Archimedean spiral,
scaled by the square of the radius of the circle. This is
easily seen as follows. If a point P in the plane has polar
coordinates (r, θ), then under inversion in the circle of ra-
dius b centered at the origin, it gets mapped to the point
P 0 with polar coordinates (b2/r, θ), so that points having
polar coordinates (ta, θ) are mapped to points having po-
lar coordinates (b2t−a, θ).
From the above, we can see that the Archimedes’ spiral
inverts to the reciprocal spiral, and Fermat’s spiral inverts
to the Lituus.
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The following two images illustrates Archimedes’s spiral
and Reciprocal spiral as mutual inverses. The red curve is
the reciprocal spiral, the purple is the Archimedes’ spiral.
The yellow is the inversion circle.
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The following image illustrates a Lituus and Fermat’s spi-
ral as mutual inverses. The red curve is the Fermat’s spiral.
The blue curve is its inversion, which is a lituus scaled by
52. The yellow circle is the inversion circle with radius 5.
Note that points inside the circle gets mapped to outside of
the circle. The closer the point is to the origin, the farther
is its corresponding point outside the circle.

XL.
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The Logarithmic Spiral*

The parametric equations for the Logarithmic Spiral are:

x(t) =aa ∗ exp(bb t) cos(t)
y(t) =aa ∗ exp(bb t) sin(t)

This spiral is connected with the complex exponential as
follows:

x(t) + i y(t) = aa exp((bb + i)t).

The animation that is automatically displayed when you
select Logarithmic Spiral from the Plane Curves menu
shows the osculating circles of the spiral. This illustrates
an interesting theorem, namely if the curvature is a mono-
tone function along a segment of a plane curve, then the
osculating circles are nested. (See page 31 of J.J. Stoker’s
“Differential Geometry”, Wiley-Interscience, 1969).
For the logarithmic spiral this implies that the plane minus
the origin is foliated by its osculating circles.
WHAT!? Hey! Wait a minute! If a smooth manifold M of
dimension n is foliated by leaves of dimension k, and if S is
a k-dimensional connected submanifold of M such that S
is tangent at every point to one of the leaves, then S is an
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open subset of a leaf. But taking M to be the punctured
plane, and S the logarithmic spiral, the osculating circle fo-
liation gives a counterexample to this well-known theorem
(which is little more than the definition of a leaf). This
paradox was pointed out to me by Étienne Ghys. (Read
words backwards below for the explanation.)

EHT NOITAILOF SLIAF OT EB
HTOOMS GNOLA EHT LARIPS

R.S.P
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Cycloid*

Cycloids are generated by rolling a circle on a straight line
and tracing out the path of some point along the radius.
The parametric equation for such a cycloid is:

x(t) = aa · t− bb · sin t

y(t) = aa− bb · cos t,

where aa is the radius of the rolling circle and bb is the
distance of the drawing point from the center of the circle.

The choice bb = aa gives the standard cycloid.

Cycloids have other cycloids of the same size as evolutes,
see the Action Menu Entry Show Osculating Circles with
Normals. This fact is responsible for Huyghen’s cycloid
pendulum having its period independent of the amplitude
of the oscillation.
H.K.
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About Epicycloids and Hypocycloids *

See also the ATOs for Spherical Cycloids

Definition and tangent construction

Epicycloids resp. Hypocycloids are obtained if one circle of
radius r rolls on the outside resp. inside of another circle
of radius R.

In 3D-XplorMath: r = hh, R = aa.
The angular velocity of the rolling circle is fr times the
angular velocity of the fixed circle (negative for hypocy-
cloids). fr has to be an integer for the hypocycloid to be
closed. The formulas do not actually roll one circle around
another, they represent the curve as superposition of two
rotations:

fr := (R− r)/(−r);
c.x := (R− r) cos(t) + r cos(fr · t);
c.y := (R− r) sin(t) + r sin(fr · t);

Double generation: If one changes the radius of the rolling
circle from r to R−r then these formulas are preserved, ex-
cept for the parametrization speed. To view this in 3DXM
replace hh by aa− hh.

* This file is from the 3D-XplorMath project. Please see:
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Epicycloids are obtained if one circle of radius
r = −hh rolls on the outside of another circle of radius
R = aa. The angular velocity of the rolling circle is fr > 0
times the angular velocity of the fixed circle (again an in-
teger for closed epicycloids).

fr := (R + r)/r;
c.x := (R + r) cos(t)− r cos(fr ∗ t);
c.y := (R + r) sin(t)− r sin(fr ∗ t);

These formulas agree with those of the hypocycloids except
for the sign of r. We view them in 3DXM by using negative
hh.

We can also use a drawing stick of length ii∗r. The default
morph shows this: 0.5 < ii < 1.5.

These more general (ii <> 1) rolling curves were impor-
tant for Greek astronomy because the planets orbit the sun
(almost) on circles. Therefore, when one looks at other
planets from earth, their orbits are (almost) such rolling
curves. It is no surprise that many of these curves have
individual names: Astroid, Cardioid, Limacon, Nephroid
are examples in 3DXM.

Tangent construction.
Rolling curves have a very simple tangent construction.
The point of the rolling circle which is in contact with the
base curve has velocity zero – just watch cars going by.
This means that the connecting segment from this point
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of contact of the wheel to the endpoint of the drawing stick
is the radius of the momentary rotation. The tangent of
the curve which is drawn by the drawing stick is therefore
orthogonal to this momentary radius.
The 3DXM-demo draws the rolling curve and shows its
tangents.
H.K., R.S.P.
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Cardioids and Limaçons*

Cardioids and Limaçons are obtained if on the outside of
one fixed circle of radius r = aa another circle of the same
radius rolls. These curves are traced by a radial stick of
length R = ii ∗ r, ii = 1 for Cardioids and ii > 1 for
Limaçons.

One choice of parametric equations for these curves is:

x(t) = 2r cos(t) + R cos(2t)
y(t) = 2r sin(t) + R sin(2t).

The evolute of the Cardioid is a smaller Cardioid, see in the
Action Menu the entry Show Osculating Circles with
Normals. In the entry Add Caustics one can rotate all
normals by a fixed amount and these rotated lines always
envelope a Cardioid.

To see the Cardioid generated by rolling a larger circle
around a smaller one choose in the exhibit Epi- and Hypocy-
cloids parameters hh = 2 ∗ aa, ii = 1.

The image of the unit circle under the complex map

z 7→ w(z) = z2 + 2z

is a Cardioid; images of larger circles (around 0) are Li-
macons. Inverses z 7→ 1/w(z) of Limaçons are figure-eight
shaped, including a Lemniscate.
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Astroid *

Parametrization in 3DXM: c(t) := aa · (cos3(t), sin3(t)).

Implicit equation: x2/3 + y2/3 = aa2/3.

Description

An Astroid is a curve traced out by a point on the circum-
ference of one circle (of radius r) as that circle rolls without
slipping on the inside of a second circle having four times
or four-thirds times the radius of the first. The latter is
known as double generation. The Astroid is thus a special
kind of a hypocycloid—the family of analogous curves one
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gets if one allows the ratios of the radii to be arbitrary.
In 3D-XplorMath, the radius r is represented by the pa-
rameter aa. A nice geometric property of the Astroid is
that its tangents, when extended until they cut the x-axis
and the y-axis, all have the same length. This means, if
one leans a ladder (say of length L) against a wall at all
possible angles, then the envelope of the ladder’s positions
is part of an Astroid. Since (by symmetry) the tangent to
the Astroid at a point p closest to the origin has a slope
of plus or minus one, it follows that the distance of p from
the origin is L/2, and so L is the “waist-diameter” of the
Astroid, i.e., the distance from p to −p. Since the diagonal
of the Astroid clearly has length 2L, it is twice as long as
the waist-diameter.

It can be shown that the normals of an Astroid envelope
an Astroid of twice the size. (To see a visual demonstra-
tion of this fact, in 3D-XplorMath, select Show Osculating
Circles and Normals from the Action Menu.) If you think
about what this means, you should see that it gives a ruler
construction for the Astroid: Intersect each ladder (be-
tween the x-axis and the y-axis) for the smaller Astroid
with the orthogonal and twice as long ladder (between the
45-degree lines) for the larger Astroid.

More Formulas

The initial formulas give an astroid centered at the origin
with its four cusps lying on the axes at distance aa from
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the origin. To derive a polynomial equation first cube both
sides of the above implicit equation (with aa = 1), factorize
and simplify:

1 = x2 + y2 + 3x4/3y2/3 + 3x2/3y4/3

1−x2 − y2 = 3x2/3y2/3(x2/3 + y2/3) = 3x2/3y2/3.

Then cube again:

(1− x2 − y2)3 = 27x2y2.

History

Quote from Robert C. Yates, 1952:
The cycloidal curves, including the astroid, were dis-
covered by Roemer (1674) in his search for the best
form for gear teeth. Double generation was first no-
ticed by Daniel Bernoulli in 1725.

Quote from E. H. Lockwood, 1961:
The astroid seems to have acquired its present name
only in 1838, in a book published in Vienna; it went,
even after that time, under various other names,
such as cubocycloid, paracycle, four-cusp-curve, and
so on. The equation x2/3 + y2/3 = a2/3 can, how-
ever, be found in Leibniz’s correspondence as early
as 1715.
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Properties

Trammel of Archimedes and Envelope of Ellipses
Define the axes of the astroid to be the two perpendicular
lines passing through the pairs of alternate cusps. A fun-
damental property of the Astroid is that the length of the
segment of a tangent between these two axes is a constant.
The Trammel of Archimedes is a mechanical device that is
based on this property: it has a fixed bar whose ends slide
on two perpendicular tracks. The envelope of the moving
bar is then the Astroid, while any particular point on the
bar will trace out an ellipse.
The Astroid is also the envelope of co-axial ellipses whose
sum of major and minor axes is constant.
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The Evolute of the Astroid

The evolute of an astroid is another astroid. (In fact, the
evolute of any epi- or hypo- cycloid is a scaled version of
itself.) In the first figure below, each point on the curve
is connected to the center of its osculating circle, while in
the second, the evolute is seen as the envelope of normals.

Curve Construction

The Astroid is rich in properties that can be used to devise
other mechanical means to generate the curve and to con-
struct its tangents, and the centers of its osculating circles.

Suppose we have a circle C centered at B and passing
through some point K. We will construct an Astroid that
is also centered at B and that has one of its cusps at K.
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Choose the origin of a cartesian coordinate system at B,
and take the point (1, 0) at K. Given a point L on the circle
C, drop a perpendicular from L to the x-axis, and let M
be their intersection. Similarly drop a perpendicular from
L to the y-axis and call the intersection N . Let P be the
point on MN such that LP and MN are perpendicular.
Then P is a point of the Astroid, MN is the tangent to
the Astroid at P , and LP the normal at P . If D is the
intersection of LP and the circle C, and D0 is the reflection
of D thru MN , then D0 is the center of osculating circle
at P .
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Pedal, Radial, and Rose

The pedal of an Astroid with respect to its center is a 4-
petaled rose, called a quadrifolium. The Astroid’s radial
is also a quadrifolium. (For any epi- or hypo- cycloid, the
pedal and radial are equal, and is a rose.)

Catacaustic and Deltoid

The catacaustic of a Deltoid with respect to parallel rays
in any direction is an Astroid.
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Orthoptic

We recall that the orthoptic of a curve C is the locus of
points P where two tangents to C meet at right angles.
The orthoptic of the Astroid is the quadriffolium r2 =
(1/2) cos(2θ)2. [Robert C. Yates.]

XL.

84



Deltoid *

The Deltoid curve was conceived by Euler in 1745 in con-
nection with his study of caustics.

Formulas in 3D-XplorMath:

x = 2 cos(t) + cos(2t), y = 2 sin(t)− sin(2t), 0 < t ≤ 2π,

and its implicit equation is:

(x2 + y2)2 − 8x(x2 − 3y2) + 18(x2 + y2)− 27 = 0.

The Deltoid or Tricuspid

The Deltoid is also known as the Tricuspid, and can be
defined as the trace of a point on one circle that rolls inside
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another circle of 3 or 3/2 times as large a radius. The latter
is called double generation. The figure below shows both of
these methods. O is the center of the fixed circle of radius
a, C the center of the rolling circle of radius a/3, and P
the tracing point. OHCJ, JPT and TAOGE are colinear,
where G and A are distant a/3 from O, and A is the center
of the rolling circle with radius 2a/3. PHG is colinear and
gives the tangent at P. Triangles TEJ, TGP, and JHP are
all similar and TP/JP = 2 . Angle JCP = 3∗Angle BOJ.
Let the point Q (not shown) be the intersection of JE and
the circle centered on C. Points Q, P are symmetric with
respect to point C. The intersection of OQ, PJ forms the
center of osculating circle at P.
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The Deltoid has numerous interesting properties.

Properties

Tangent

Let A be the center of the curve, B be one of the cusp
points,and P be any point on the curve. Let E, H be the
intersections of the curve and the tangent at P. The seg-
ment EH has constant length distance[E,H]== 4/3*dis-
tance[A,B]. The locus of midpoint D of the tangent seg-
ment EH is the inscribed circle. The normals at E,P,H
are concurrent, and the locus of these intersections is the
circumscribed circle. If J is the intersection of another tan-
gent, cutting EH at right angle, then the locus traced by
J (the Deltoid’s orthoptic) is the inscribed circle.
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The Deltoid and the Astroid

The caustic of the Deltoid with respect to parallel rays in
any direction is an Astroid.
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Evolute

The evolute of Deltoid is another Deltoid. (In fact, the evo-
lutes of all epicycloids and hypocycloids are scaled version
of themselves.) In the above figure, the evolute is shown
as the envelope of its normals.
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Simson Lines

The Deltoid is the envelope of the Simson lines of any
triangle. (Robert Simson, 1687–1768)
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Step by step description:

1. Let a triangle be inscribed in a circle. 2. Pick any
point P on the circle. 3. Mark a point Q1 on any side
of the triangle such that line[P,Q1] is perpendicular to it,
extending the side if necessary. 4. Similarly, find points Q2
and Q3 with respect to P for the other two sides. 5. The
points Q1, Q2, and Q3 are colinear, and the line passing
through them is called the Simson line of the triangle with
respect to P. 6. Find Simson lines for the other points P
on the circle. Their envelope is the deltoid. Amazingly,
this is true for any triangle.

Pedal, Radial, and Rose
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The pedal curve of a Deltoid with respect to a cusp, vertex,
or center is a folium curve with one, two, or three loops
respectively. The last one is called the trifolium, a three
petalled rose. The Deltoid’s radial is a trifolium too.
XL.
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The Nephroid *

The Nephroid is generated by rolling a circle of one ra-
dius on the outside of a second circle of twice the radius.
In 3D-XplorMath, either choose Nephroid from the Plane
Curve menu, or choose Circle, then select Set Parame-
ters... from the Settings menu and set hh = −0.5 · aa,
ii = 1. With R = 3r we thus have the parametrization for
Nephroids:

x(t) =R · sin(t) + r · sin(3t)
y(t) =R · cos(t) + r · cos(3t)

As with Cardioids and Limaçons, one can also make the
radius for the drawing stick shorter or longer: Set ii > 1
for the looping relatives of the Nephroid or see the default
Morph in the Animation menu.
The complex map z 7→ z3 +3z maps the unit circle to such
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a Nephroid. To see this, in the Conformal Map Category,
select z 7→ zee + eez from the Conformal Map menu, and
then choose Set Parameters from the Settings menu and
set ee to 3.
The normals of one Nephroid have as envelope another,
smaller Nephroid—the same phenomenon as for the Car-
dioid and the Cycloid. (To see this select Show Osculat-
ing Circles With Normals from the Action menu). In
technical jargon, the caustics for each of these curves is a
similar curve.
H.K.
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About Mechanically Generated Curves *

Examples
Presently we have the following mechanically generated
plane curves programmed together with a decoration which
shows this generation and the corresponding construction
of the tangents of the curve:

Epi- and Hypocycloids,
all other rolling curves.
Also: Tractrix, Cissoid,
Conchoid, Lemniscate.

This image is obtained with Color Morph in the Anima-
tion menu, it shows the family obtained from the current
drawing mechanism (here Lemniscate).

Moving Planes
It is often convenient to discuss such mechanical genera-
tions in terms of two planes, a fixed plane on which the
drawing is done (paper plane) and a second plane which is
attached to that piece of the mechanical contraption that
holds the drawing pen (drawing plane). In the case of

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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rolling curves we have the drawing plane attached to the
rolling wheel, in the case of the Lemniscate the drawing
plane is attached to the middle one of the three connected
moving segments.

We think of the orbits of the points of the drawing
plane as curves that are mechanically generated
by the apparatus under consideration.

The velocity vectors of these orbits clearly give a time de-
pendent vector field. Since this vector field is obtained by
differentiating the orbits of a family of isometries we ob-
tain at each time t the vector field of a Euclidean group of
motions, in other words: for most t the vector field con-
sists of the velocity vectors of a rotation, a rotation around
the so called momentary center of rotation. This way of
looking at the generation gives immediately tangent con-
structions for all orbits: join the momentary center of ro-
tation to the moving point, the perpendicular line through
the point is tangent to its orbit.
It is therefore useful to visualize the movement of the draw-
ing plane together with the time dependent velocity field
of its points. We have done this by decorating the draw-
ing plane with not too many but enough random points so
that the movement of the drawing plane becomes visible,
but the curve under consideration is not obscured. More-
over, to make the vector field visible at each moment t, we
have drawn the random points not once, but at two sub-
sequent positions. This picture is interpreted by the brain
correctly.
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Finally, one has to determine the momentary center of ro-
tation. This is different for each construction. For rolling
curves the definition of “rolling” is such that that point,
where the rolling wheel touches the fixed curve (“street”),
is the momentary center of rotation. In general one has to
look for points of the mechanical apparatus for which the
direction of the momentary movement (“orbit tangent”)
can be decided. The momentary center is then on the line
(“radius”) perpendicular to the tangent, so that two such
lines are needed. The 3DXM demos use green lines to de-
termine the momentary center.

H.K.
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Cubic Curves*

Real Cubic Curves in R2 were studied extensively by New-
ton. Later these curves were considered as the real points
of complex curves in C2. If they do not have double points
they can be parametrized by additive groups. This means
that the points on these curves can be added. Surprisingly
this addition is a geometric addition, i.e. the sum P + Q
can be geometrically constructed from P,Q and the curve.
In the case of cubic curves we have:

P + Q + R = 0 ⇔
A straight line intersects the curve in P,Q,R .

In 3D-XplorMath are the following examples:

Cubic Polynomial Graph, x(t) = t, y(t) = x(t)3 + aa · x(t),

Cuspidal Cubic, x(t) = 3t2/(4aa), y(t) = t(t2 +bb)/(4aa2),

Cubic Rational Graph I, x(t) = tan(t/2)/aa, y(t) = sin(t),

Cubic Rat’l Graph II, x(t) = tanh(t/2)/aa, y(t) = sinh(t),

Elliptic Cubic, x + 1/x− aa · (y − 1/y) = ff (implicit),

Folium, [x, y] = aa[(t2− t3), (t− 2t2 + t3)]/(1− 3t− 3t2),

Nodal Cubic, x = 1− t2, y = ((1− t2) + bb) · t.
The last two of these are cubics with one double point.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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Their points do not form a group, therefore their Action
Menu has only the Standard Actions for plane curves.

All the others are parametrized by a 1-dim. Abelian group
and the curves are shown with a default demo explaining
the geometric addition.
If we intersect a Cubic Polynomial Graph without quadratic
term with a line, then the x-coordinates of the intersection
points are always roots of a polynomial without quadratic
term. In other words: these three x-coordinates add up to
0., the geometric addition is the standard addition on the
x-axis.
The Cuspidal Cubic is also parametrized by R (or C) and
a simple computation shows: if 1/t1 +1/t2 +1/t3 = 0 then
the three points [x(ti), y(ti)] lie on a straight line. And du-
ally, if t1 +t2 +t3 = 0 then the tangents at the three points
[x(ti), y(ti)] pass through one point. Again, the addition
has a simple geometric interpretation that allows to con-
struct, if two points and the curve are given, their sum.
The first Rational Cubic Graph is parametrized by a circle
S1 (we have to add the infinite point (1, 0) ). The demo
that comes with the curve shows how the sum point can be
constructed by intersecting lines. The Action Menu offers
a second demo that shows how addition on the parametriz-
ing circle and on the curve are the same.
The second Rational Cubic Graph would not be here if we
could visualize these curves over the complex Numbers.
Over C one can think of this curve as the group S1 ⊕ R,
a cylinder. The first rational graph visualizes the equator
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circle, the second one visualizes the generator through the
neutral element plus the opposite generator: two copies of
R (and a double point at 1).
The Elliptic Cubic is parametrized by a pair of so called
Elliptic Functions. Such functions can be viewed either as
doubly periodic functions from C to S1 or as functions de-
fined on some torus. For more details see the text Elliptic
Functions.
The addition on elliptic curves can be compared with addi-
tion on the circle. The formulas for trigonometric functions

cos(α + β) = cos(α) cos(β)− sin(α) sin(β)
sin(α + β) = sin(α) cos(β) + cos(α) sin(β)

show that

(x1, y1)⊕ (x2, y2) := (x1x2 − y1y2, x1y2 + y1x2)

gives the addition of points (x1, y1), (x2, y2) ∈ S1. Notice
that the rational points (i.e. the pythagorean triples) are
a subgroup. The elliptic functions have analogous func-
tional equations which are similarly the basis for addition
formulas for points on elliptic cubics. This is explained in
the text Geometric Addition on Cubic Curves.
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Symmetries Of Elliptic Functions*

[The approach below to elliptic functions follows
that given in section 3 of ”The Genus One Helicoid
and the Minimal Surfaces that led to its Discovery”,
by David Hoffman, Hermann Karcher, and Fusheng
Wei, published in Global Analysis and Modern Math-
ematics, Publish or Perish Press, 1993. For conve-
nience, the full text of section 3 (without diagrams)
has been made an appendix to the chapter on the
Conformal Map Category in the documentation of
3D-XplorMath.]

An elliptic function is a doubly periodic meromorphic func-
tion, F (z), on the complex plane C. The subgroup L of C
consisting of the periods of F (the period lattice) is isomor-
phic to the direct sum of two copies of Z, so that the quo-
tient, T = C/L, is a torus with a conformal structure, i.e.,
a Riemann surface of genus one. Since F is well-defined
on C/L, we may equally well consider it as a meromorphic
function on the Riemann surface T .

It is well-known that the conformal equivalence class of
such a complex torus can be described by a single complex
number. If we choose two generators for L then, without
changing the conformal class of C/L, we can rotate and
scale the lattice so that one generator is the complex num-

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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ber 1, and the other, τ , then determines the conformal class
of T. Moreover, τ1 and τ2 determine the same conformal
class if and only if they are conjugate under SL(2, Z).

The simplest elliptic functions are those defining a degree
two map of T to the Riemann sphere. We will be con-
cerned with four such functions, that we call JD, JE, JF,
and WP. The first three are closely related to the classical
Jacobi elliptic functions, but have normalizations that are
better adapted to certain geometric purposes, and simi-
larly WP is a version of the Weierstrass ℘-function, with
a geometric normalization. Any of these four functions
can be considered as the projection of a branched cover-
ing over the Riemann sphere with total space T , and as
such it has four branch values, i.e., points of the Riemann
sphere where the ramification index is two. For JD there
is a complex number D such that these four branch values
are {D,−D, 1/D,−1/D}. Similarly for JE and JF there
are complex numbers E and F so that the branch values
are {E,−E, 1/E,−1/E} and {F,−F, 1/F,−1/F} respec-
tively, while for WP there is a complex number P such that
the branch values are {P,−1/P, 0,1}. The cross-ratio, ∏,
of these branch values (in proper order) determines τ and
likewise is determined by τ .

The branch values E, F, and P of JE, JF, and WP can be
easily computed from the branch value D of JD (and hence
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from dd) using the following formulas:

E = (D − 1)/(D + 1), F = −i(D − i)/(D + i),

P = i(D2 + 1)/(D2 − 1),

and we will use D as our preferred parameter for describing
the conformal class of T . In 3D-XplorMath, D is related
to the parameter dd (of the Set Parameter... dialog) by
D = exp(dd), i.e., if dd = a + ib, the D = exp(a) exp(ib).
This is convenient, since if D lies on the unit circle (i.e., if
dd is imaginary) then the torus is rectilinear, while if D has
equal real and imaginary parts (i.e., if b = π/4) then the
torus is rhombic. (The square torus being both rectilinear
and rhombic, corresponds to dd = i · π/4).

To completely specify an elliptic function in 3D-XplorMath,
choose one of JD, JE, JF, or WP from the Conformal
Map menu, and specify dd in the Set Parameter... dialog.
(Choosing Elliptic Function from the Conformal map menu
will give the default choices of JD and a square torus.)

When elliptic functions where first constructed by Jacobi
and by Weierstrass these authors assumed that the lattice
of the torus was given. On the other hand, in Algebraic
Geometry, tori appeared as elliptic curves. In this repre-
sentation the branch values of functions on the torus are
given with the equation, while an integration of a holo-
morphic form (unique up to a multiplicative constant) is
required to find the lattice. Therefore the relation between
the period quotient τ (or rather its SL(2, Z)-orbit) and the
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cross ratio lambda of the four branch values has been well-
studied. More recently, in Minimal Surface Theory, it was
also more convenient to assume that the branch values of
a degree two elliptic functions were given and that the pe-
riods had to be computed. Moreover, symmetries became
more important than in the earlier studies.

Note that the four branch points of a degree two ellip-
tic function (also called ”two-division points”, or Zwei-
teilungspunkte) form a half-period lattice. There are three
involutions of the torus which permute these branch points;
each of these involutions has again four fixed-points and
these are all midpoints between the four branch points.
Since each of the involutions permutes the branch points, it
transforms the elliptic function by a Moebius transforma-
tion. In Minimal Surface Theory, period conditions could
be solved without computations if those Moebius trans-
formations were not arbitrary, but rather were isometric
rotations of the Riemann sphere—see in the Surface Cat-
egory the minimal surfaces by Riemann and those named
Jd and Je. This suggested the following construction: As
degree two MAPS from a torus (T = C/L) to a sphere, we
have the natural quotient maps T/−id; these maps have
four branch points, since the 180 degree rotations have
four fixed points. To get well defined FUNCTIONS we
have to choose three points and send them to {0, 1,1}.
We choose these points from the midpoints between the
branch points, and the different choices lead to different
functions. The symmetries also determine the points that
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are sent to {−1,+i,−i}. In this way we get the most sym-
metric elliptic functions, and they are denoted JD, JE, JF.
The program allows one to compare them with Jacobi’s
elliptic functions. The function WP = JE ∗JF has a dou-
ble zero, a double pole and the values {+i,−i} on certain
midpoints (diagonal ones in the case of rectangular tori).
Up to an additive and a multiplicative constant it agrees
with the Weierstrass ℘-function, but in our normalization
it is the Gauss map of Riemann’s minimal surface on each
rectangular torus.

We compute the J-functions as follows. If one branch
value is called +B, then the others are {−B,+1/B,−1/B}.
Therefore the function satisfies the differential equations

(J 0)2 = (J 0(0))2(J4 + 1− (B2 + 1/B2)J2) = F (J),

J 00 = (J 0(0))2(2J3 − (B2 + 1/B2)J = F 0(J)/2).

Numerically we solve this with a fourth order scheme that
has the analytic continuation of the square root J 0 =

√
J 02

built into it:
Let J(0), J 0(0) be given. Compute J 00(0) := F 0(J(0))/2
and, for small z,

Jm := J(0) + J 0(0) · z/2 + J 00(0) · z2/8, J 00
m := F 0(Jm)/2,

J(z) := J(0) + J 0(0) · z + (J 00(0) + 2 · J 00
m) · z2/6.

Finally let J 0(z) be that square root of F (J(z)) that is
closer to J 0(0) + J 00

m · z (analytic continuation!). Repeat.
H.K.
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Addition on Cubic Curves.*

See also the Action Menu of the Parabola “Show Normals
through Mouse Point” and the comments in the ATO.
As an introductory example view the unit circle as a group.
Then the addition of angles φ ∈ (R mod 2π) gets translated
via the parametrization

x = cos(φ), y = sin(φ)
into

(x1, y1)⊕ (x2, y2) := (x1x2 − y1y2, x1y2 + x2y1).
Once this addition law is known one does not need the
transcendental functions sin and cos to “add” points on
the circle. Even to do this addition with ruler and compass
is easy. And it is amusing to note that the Pythagorean (or
rational) points of the circle are a subgroup, e.g. (3/5, 4/5)⊕
(12/13, 5/13) = ((36− 20)/65, (15 + 48)/65).

In a similar way there exists a geometric addition on cubic
curves, and if the cubic is parametrized with appropriate
functions (defined either on C, or on C/2πZ, or on C/Γ, Γ
a lattice in C) then the well known addition in the domain
is, under the special parametrization, the same as the ge-
ometric addition on the cubic. The simplest instance is
when the cubic is the graph of a cubic polynomial without

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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quadratic term: y = x3 + mz + c. Then, if we have two
points (x1, y1), (x2, y2) on this cubic and join them by a
line, this line intersects the graph in a third point (x3, y3)
such that x1+x2+x3 = 0. This gives a geometric definition
of addition on this cubic graph.

Addition on a polynomial cubic graph without
quadratic term. Every line intersects so that x1+
x2 + x3 = 0. Note discrete subgroup.

Similarly, let us map C bijectively onto the Cuspidal Cu-
bic by z 7→ (z2, z3). In this case, if we have z1 + z2 +
z3 = 0, then the tangents at the three points (z2

j , z3
j )

are concurrent—we have seen this as a property of the
Parabola, because the Cuspidal Cubic is the evolute of
the Parabola. One can also see the previous colinearity as
reflecting addition, because the three points (z2

j , z3
j ), j =

1, 2, 3, of this cubic lie on a line if 1/z1 + 1/z2 + 1/z3 = 0.
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Addition on the cuspidal cubic z 7→ (z2, z3). Note
the discrete subgroup. If z1 + z2 + z3 = 0, then
the tangents at these three points are concurrent.
If 1/z1 +1/z2 +1/z3 = 0, then these three points
lie on a straight line.

The next case is the group C/2πZ. The trigonometric
functions identify points in C mod 2π. We map this group
to a cubic curve by x := tan(z/2), y := sin(z), so that
y = 2x/(x2 + 1) and this cubic is again a graph. The
addition theorems tan(z + w) = (tan(z) + tan(w))/(1 −
tan(z) tan(w)) and sin(z+w) = sin(z) cos(w)+cos(z) sin(w)
with cos(z) = 1− 2 sin(z/2)2 = 1− sin(z) · tan(z/2) again
give an addition on this cubic graph: it is a geometric addi-
tion because the three points (xj , yj) lie on one line iff z1 +
z2 + z3 = 0. The name “geometric addition” is even more
justified because the third point (x3, y3) can be constructed
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with ruler and compass from the other two. In fact, for re-
peated additions a ruler suffices: As a preparation we have
to add to all points in sight the 2-division point (1, 0) =
(tan(π/2), sin(π)) as follows: (x, y)⊕(1, 0) = (−1/x,−y).
One needs ruler and unit circle for this. Then the lines
through (x1, y1), (x2, y2) and (x1, y1) ⊕ (1, 0), (x2, y2) ⊕
(1, 0) intersect in the point (x3, y3) = −(x1, y1)⊕ (x2, y2).

!

!

!

P2

P2+(    ,0)

P1

P3 := - (P1 + P2)

P1+(    ,0)

P3+(    ,0)

Addition group S1 on a cubic that is the graph
of x 7→ y = 2x/(x2 + 1), parametrized by x :=
tan(z/2), y := sin(z). Note the finite discrete
subgroup. (1, 0) = (tan(π/2), sin(π)), the point
at infinity, is the only point of order 2.

So far we have seen the circle part of the cylinder group
C/2πZ. To see a generator of the cylinder we replace t, x, y
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by it, ix, iy, then we obtain x := tanh(z/2), y := sinh(z),
so that y = 2x/(1 − x2). The component of the graph
through 0 is a subgroup isomorphic to R. It represents
one generator of the cylinder. The other two components
represent the opposite generator with one point missing:
the 2-division point opposite 0 is the point (1, 0) on this
cubic. This allows the same ruler construction of addition
as before, except for a sign change in (x, y) ⊕ (1, 0) =
(+1/x,−y) (because 1/i = −i).

(x,y)+(   ,0) = (1/x,-y)

!

!

!

!

P2

P1

P3 := - (P1 + P2)

P2+(    ,0)

P1+(    ,0)

P3+(    ,0)

Addition group R∪R on a cubic that is the graph
of x 7→ y = 2x/(1 − x2) and is parametrized by
x := tanh(z/2), y := sinh(z). (1, 0) is the only
point of finite order. Note the infinite discrete
subgroup with one finite subgroup of order 2.
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Finally we come to the group C/Γ. The parametrizing
functions of the previous example, tan(z/2), sin(z), must
be replaced by Γ-invariant, “doubly periodic” functions,
also called elliptic functions. The simplest of these are
those of degree two, as maps from the torus T 2 := C/Γ
to the Riemann sphere S2 = C ∪ {1}. Two facts are
important:
(i) Pairs of such functions satisfy cubic equations such as

(w2 + 1)v = const · (v2 − 1)w. The solution set of any
cubic equation is called a cubic curve.

(ii) There are addition formulas, analogous to those for
sin and cos.
They determine the pair (v(z1 + z2), w(z1 + z2)) from
the pairs (v(z1), w(z1)) and (v(z2), w(z2)).

It turns out that these addition formulas are again “geo-
metric” as in the previous cases, namely, the three pairs
(v(z1), w(z1)), (v(z2), w(z2)), (−v(z1 + z2),−w(z1 + z2))
lie on a line. Therefore we can again define addition on
the cubic geometrically:

Join the points to be added by a line and take the third
point of intersection with the cubic as the negative of
the sum.

The addition formulas are simple enough so that the ge-
ometric addition is again a “ruler and compass construc-
tion”. The compass is only needed to add 2-division points
as in the previous case, all further additions can be done
by intersecting lines only.
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w

v

P1 = (w,v)

P2

P3 = - (P1+P2)

P1+T = (-1/w,-v)

P2+T
P3+T

2-division point T = (     ,0), T+T = 0!

(Notice the discrete subgroup)

Addition on a general cubic:

(w1, v1)™(w2, v2) = (
w1 + w2

1− w1w2
· v1 − v2

v1 + v2
,
1 + w1w2

1− w1w2
· v1 − v2

1− v1v2
)

.
The elliptic functions v, w, parametrizing the above cubic
curve have numerous properties that can be used to define
them. For example, they are numerically accessible, since
they are solutions of the following system of differential
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equations (compare tan0 / tan = 1/ cot+ cot):

v0

v
= w0(0)

µ
1
w
− w

∂
,

w0

w
= v0(0)

µ
1
v

+ v

∂
,

with v0(0)/w0(0) = −2 for the above cubic. These imply
functional equations for v, w so that more similarities with
the trigonometric case, like (sin0)2 = 1− sin2, become ap-
parent:

µ
v0

v

∂2

= w0(0)2
µ

1
w
− w

∂2

= w0(0)2
√µ

1
w

+ w

∂2

− 4

!

= v0(0)2
√µ

1
v
− v

∂2
!

− 4w0(0)2,

(v0)2 = v0(0)2
µ

(1− v2)2 − 4
w0(0)2

v0(0)2
· v2

∂
.and hence:

Every differential equation

(f 0)2 = F (f) implies 2f 00 = F 0(f).

The first order equation determines f 0 only up to sign while
the second order equation determines f 00 uniquely, in par-
ticular for trigonometric and elliptic functions.
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Folium of Descartes*

This is a famous curve with a long history (see e.g.
http:\\www-history.mcs.st-andrews.ac.uk
/Curves/Curves.html). The curve is the solution set of
the equation

x3 + y3 = 3axy.

One can see that the solutions for different a differ only
by scaling, namely divide the equation by a3 and replace
x/a, y/a by x, y.

The two most frequently given parametrizations are:

x(t) =
3t

1 + t3
, y(t) =

3t2

1 + t3
,

r(ϕ) =
sin 2ϕ

sin3 ϕ + cos3 ϕ
, −π/4 < ϕ < 3π/4.

The first parametrization has the disadvantage that at
t = −1 the denominator vanishes, the curve jumps “from
minus infinity to plus infinity”, while the important dou-
ble point at 0 ∈ R2 is left out (or given by t = 1). This
can be remedied by the transformation u = 1/(1 + t), t =

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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−1 + 1/u, which changes the parametrization to

x(u) =
u2 − u3

1− 3u + 3u2
, y(u) =

u− 2u2 + u3

1− 3u + 3u2
,

−1 < u < 1.

H.K.
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About Implicit Curves in the Plane*

Compare Implicit Surfaces in Space

There are three principal methods for describing curves in
the plane:

a) As parametrized curves c(t) = (x(t), y(t)) with x, y :
(t0, t1) 7→ R. For example the unit circle can be given as

x(t) = R · cos(t), y(t) = R · sin(t), t ∈ [0, 2π].
b) As the graph y = F (x) of a function F : [x0, x1] 7→ R.
For example the upper unit semi-circle can be given as the
graph of the function F (x) =

√
1− x2 for x ∈ (−1,+1).

c) Implicitly as a level set {f = c} of a function f : R2 7→ R.
For example the unit circle is the level {f = 1} of the
function f(x, y) = x2 + y2.

Implicit Curves in 3DXM:

Cassini Ovals f(x, y) = ((x−aa)2+y2)((x+aa)2+y2)−bb4

Tacnodal Quartic f(x, y) = y3 + y2 − x4

Teissier singular Sextic f(x, y) = (y2 − x3)2 − x5 · y
Userdefined Implicit Curves: available
Parametrized Curves with Level Functions:
Cuspidal Cubic f(x, y) = 27aa · y2 − 4(x + bb)x2

Nodal Cubic f(x, y) = y2 − (1− x)x2

Clearly, method b) can easily be written as a special case

* This file is from the 3D-XplorMath project. Please see:
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of methods a) or c) by using for a) the “graph parametriza-
tion” x(t) = t, y(t) = F (t), and by using for c) the trivial
level function f(x, y) = y − F (x) and {f = 0}.
However, implicit curves {f(x, y) = c} really give a dif-
ferent and somewhat richer class of objects than are given
by explicit parametrization. For example, level sets may
have several components; also, one is more interested in
the singularities of level sets. In differential geometry one
usually assumes that parametrized curves are without sin-
gularities, while in algebraic geometry the singularities of
the level sets of polynomials are a major subfield of in-
terest. The Tacnodal Quartic and the Teissier Sextic are
examples in 3DXM.

Up to release 10.6 there are only a small number of im-
plicit curves preprogrammed into 3DXM. What actually
gets drawn are the solutions of the equation f(x, y) = ff
with xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax (where these
limits can be set in the Settings Menu, dialog entry Set
t,u,v,ranges... and, as always, ff can be set in the dialog
entry Set Parameters, Modify Object.
Note that user-defined implicit curves can be entered.

The default morphs of the implicit curves vary the param-
eter ff , so that, what one sees is a family of level curves
of f . It may be helpful to think of the function f(x, y) as
giving the “height above sea-level” at the point (x, y), in
which case the levels {f(x, y) = ff} are just the level lines
one is used to from topographic maps. If one chooses from
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the Animation Menu the entry Color Morph, the program
will draw such a topographic map with each level line a
different color.
Some parametrized curves are provided with level func-
tions. For these the Animation Menu has the entry Morph
Level Lines. In the Cassini case this morph looks better
with morphing parameter bb = ff1/4.

Note that, while a parametrized curve depends on param-
eters only if the author chooses to embed it in some fam-
ily, implicit curves always come naturally as 1-parameter
family of curves. These families have been used to study
singularities of curves via limits of nonsingular curves.

Tangents, Normals and Curvature

The gradient of the (height) function f is a vectorfield
along and normal to the level lines. Therefore we have,
even without parametrizing the curve, normals and tan-
gents:

n =
grad f

|grad f | , t = (−ny, nx).

Assuming we had a parametrized curve with unit normal
and tangent fields n, t then the formula ṅ(s) = ∑(s) · ċ(s)
holds whether or not s is arc length parameter. This im-
plies for our vector fields

∑ = h∇tn, ti = hessef(t, t)/|grad f |.

R.S.P.
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Cassinian Ovals*

Level function in 3DXM:
f(x, y) := (x− aa)2 + y2) · ((x + aa)2 + y2)− bb4

The default Color Morph varies bb = ff1/4 instead of ff .

The Cassinian Ovals (or Ovals of Cassini) were first studied
in 1680 by Giovanni Domenico Cassini (1625–1712, aka
Jean-Dominique Cassini) as a model for the orbit of the
Sun around the Earth.

A Cassinian Oval is a plane curve that is the locus of
all points P such that the product of the distances of P
from two fixed points F1, F2 has some constant value c, or
P F1 P F2 = c. Note the analogy with the definition of an
ellipse (where product is replaced by sum). As with the el-
lipse, the two points F1 and F2 are called foci of the oval. If
the origin of our coordinates is the midpoint of the two foci
and the x-axis the line joining them, then the foci will have
the coordinates (a, 0) and (−a, 0). Following convention,
b :=

√
c. Then the condition for a point P = (x, y) to lie on

the oval becomes: ((x−a)2 +y2)1/2((x+a)2 +y2)1/2 = b2.
Squaring both sides gives the following quartic polynomial
equation for the Cassinian Oval:

((x− a)2 + y2)((x + a)2 + y2) = b4.

When b is less that half the distance 2a between the foci,
i.e., b/a < 1, there are two branches of the curve. When

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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a = b, the curve has the shape of a figure eight and is
known as the Lemniscate of Bernoulli.

The following image shows a family of Cassinian Ovals
with a = 1 and several different values of b.

In 3D-XplorMath, you can change the value of parameter
b = bb in the Settings Menu → SetParameters. An anima-
tion of varying values of b can be seen from the Animate
Menu → Color Morph.

Bipolar equation: r1r2 = b2

Polar equation: r4 + a4 − 2r2a2 cos(2θ) = b4

A parametrization for Cassini’s oval is r(t)·(cos(t), sin(t)),
r2(t) := a2 cos(2t) +

p
(−a4 + b4) + a4(cos(2t))2,

t ∈ (0, 2π], and a < b. This parametrization only generates
parts of the curve when a > b.
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By default 3D-XplorMath shows how the product defi-
nition of the Cassinian ovals leads to a ruler and circle
construction based on the following circle theorem about
products of segments:

Cassinian Ovals as sections of a Torus

Let c be the radius of the generating circle and d the dis-
tance from the center of the tube to the directrix of the
torus. The intersection of a plane c distant from the torus’
directrix is a Cassinian oval, with a = d and b2 =

√
4cd,

where a is half of the distance between foci, and b2 is the
constant product of distances.

Cassinian ovals with a large value of b2 approch a circle,
and the corresponding torus is one such that the tube ra-
dius is larger than the center to directrix, that is, a self-
intersecting torus without the hole. This surface also ap-
proaches a sphere.
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Note that the two tori in the figure below are not identical.

Arbitrary vertical slices of a torus are called Spiric Sec-
tions. In general they are not Cassinian ovals.
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Proof: Start with the equation of a torus

(
p

x2 + y2 − d)2 + z2 = c2.

Insert y = c, rearrange and square again:

x2 +z2 +d2 = 2d
p

x2 + c2, (x2 +z2 +d2)2 = 4d2(x2 +c2).

Now multiply the factors of the implicit equation of an
Cassinian oval and rearrange

((x− a)2 + y2) · ((x + a)2 + y2) = b4,

(x2 − a2)2 + y4 + 2y2(x2 + a2) = b4,

(x2 + y2)2 + 2a2(y2 − x2) = b4 − a4.

These two equations match because of a = d, b2 = 2dc,
after rotation of the y-axis into the z-axis.

Curves that are the locus of points the product of whose
distances from n points is constant are discussed on pages
60–63 of Visual Complex Analysis by Tristan Needham.
XL.
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User Defined Plane Curves in 3DXM*

Selection of one of these entries will open a dialog to enter
the data the user wishes. Default examples are provided.

User Cartesian: enter x(t) := . . . , y(t) := . . ..

User Polar: enter r(t) := . . . , ϕ(t) := . . ..
The curve is (r(t) cos(ϕ(t)), r(t) sin(ϕ(t))).

User Graph: enter y(t) := . . ., implied is x(t) := t. The
curve (t, y(t)) is the Graph of the function y. Three ap-
proximations are shown:Taylor, Interpolation, Fourier.

These are the explicitly parametrized user curves. The
standard decorations are available: Parallel Curves, Gen-
eralized Cycoids, Osculating Circles, Family of Normals
and their Envelope, Caustics from Rotated Normals.

User Implicit: enter level function F (x, y) := . . ..
See the separate text: Implicit Planar Curves above, avail-
able also from the Documentation Menu (after selection of
user defined implicit curve).

User Curvature: enter the curvature function ∑(s) := . . ..
The program assumes that the parameter s is arc length.
See also the text below: User Curves By Curvature, again
available from the Documentation Menu of 3DXM.
H.K.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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User Defined by Curvature*

A planar curve (parametrized by arc length) can be recon-
structed from its curvature function t 7→ ∑(t) as follows:

(1) take the antiderivative of ∑, α(t) :=
R t

∑(σ)dσ,
(2) choose an initial point p, an initial tangent vector ċ(0)

and an orthonormal basis e1 = ċ(0), e2,
so the definition of curvature (namely ∑ := |c̈|, plus a sign
convention) implies that,
(3) ċ(t) = e1 · cosα(t) + e2 · sinα(t).
Then one more integration,
(4) c(t) = p +

R t
0 ċ(σ)dσ,

determines the curve. This description explains why the
curvature is also called the “rotation speed” of the tangent
vector field ċ(t).
In 3D-XplorMath one can select User Curvature. A dialog
box opens and one can enter the desired curvature func-
tion. The initial point p is taken as the origin and the
initial tangent is taken as the unit vector in the positive
x-direction.
The parameter gg in this case defines a “precision divi-
sor”, that can be between 1 and 30. The size of the

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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subintervals used in approximating the above integrals is
δ := (tMax − tMin)/(tResolution − 1) if gg = 1, and in
general it is δ/gg. If the curvature function ∑ becomes
very large somewhere, and in particular if it is infinite at
an endpoint of the interval [tMin, tMax], it is a good idea
to use a fairly large value of gg to counteract the resulting
numerical inaccuracies that will occur in the evaluation of
the integrals.
Note that 3D-XplorMath offers the same Action Menu En-
tries as for explicitly parametrized curves. For example try
the caustics.
R.S.P.
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