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The Helix*
The helix is the simplest nonplanar space curve. It can
be translated along itsself by a group of isometries (called
screw motions) and therefore has its geometric invariants
– the curvature and the torsion – constant.
Our (circular) helix as a parametrized curve c is given (with
defaults aa = bb = 1.5, cc = 0.25) as

c(t) = (aa cos(t), bb sin(t), cc(t− tmin)− 3).

In the default Morph we extend the helix like pulling a bed
spring and therefore want to keep its length constant. To
do this we compute f := (aa2 + cc2)−1/2 and show the
reparametrized curve c(f · t).
Before we do the morph we select from the Action Menu
Show As Tube. These tubes are either made with the
’Frenet Frame’ or with a ’Parallel Frame’. The tube be-
haves like an elastic rod if we choose in the Action Menu
Parallel Frame. The default morph now shows (at the
right end, the left is kept fixed) that the tube also twists
around itsself while it is extended. When this occurs with
electrical wires or water hoses that are pulled sideways
from their coil, it is a well known and annoying phenomenon.
H.K.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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Torus Knots*
Torus knots are quite popular space curves because they
represent the simplest way to write down knotted curves
in R3. Our knots are parametrized as

c(t) :=




aa + bb · cos(dd · t) · cos(ee · t)
aa + bb · cos(dd · t) · sin(ee · t)

cc · sin(dd · t)





with defaults aa = 3, bb = 1.5, cc = 1.5, dd = 5, ee = 2.

The default Morph changes the torus size. If, before the
morph, one chooses in the Action Menu Show As Tube and
Parallel Frame then one notices that the twisting of the
tube (see the ATO of the helix for more details) is clearly
visible already for rather small changes of the shape of the
torus.

The Action Menu has also the entry Show Dotted Torus.
Selecting it adds the torus to the picture. This is more
spectacular when viewing in Anaglyph Stereo Vision,
through red/green filter glasses. Observe that our brain
gets these several thousand dots sorted out into corre-
sponding pairs of red and green dots that then form the
torus surface in R3 - and this seems to happen instantly.

The best method to get a feeling for the curvature of a
space curve is to select in the Action Menu Show Oscu-
lating Circles & Evolute. The Radius r of the circle

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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is the radius of curvature of the curve at the current point
and ∑ := 1/r is called the curvature (at that point). The
direction from c(t) to the midpoint of the osculating circle
determines always the direction of the second basis vector
of the Frenet frame.
If one uses the Parallel Frame, then one has to represent
the curvature by a vector of length ∑ in the plane spanned
by the two normal vectors of the Parallel frame. If one has
selected, in the Action Menu, Parallel Frame and clicks
Show Repére Mobile then this curvature vector is drawn,
together with its past history, in each normal plane. – The
last entry in the Action Menu, Show Frenet Integration
does the opposite: if the curvature vector function is given
in the initial normal plane then the demo reconstructs the
curve by integrating the Frenet equation.
H.K.
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Genus Two Knots*

Torus knots, see the previous entry, are the most easily
described knots and, in particular when viewed on a torus,
they are also very easy to visualize.
If one wants to visualize other knots on some surface, one
needs more complicated surfaces than tori. From this point
of view the next simplest knots can be put on a genus 2
surface. The surface we chose looks like two tori which are
joined by a small handle. (The size of these tori is con-
trolled by the parameters aa and bb as for torus knots.)
The surface is implicitly described by an equation (see im-
plicit surfaces in the surface category) and can be made fat-
ter by increasing ff. As examples of genus 2 knots we chose
the connected sums of two (dd, ee) - torus knots. The sign
of hh controls whether the two torus knots are connected
with reflectional symmetry or with 180◦ rotational symme-
try. The two simplest examples are the Square Knot and
the Granny Knot where two (3, 2) - torus knots (=Trefoil
Knots) are connected with the two types of symmetry.
The sum of the two torus knots is first constructed outside
the surface, then projected onto the surface and finally
smoothed with a length minimizing algorithm. The re-
sult is good enough for tubes made with a Parallel frame,
whereas the tube from the Frenet frame is not smooth.
H.K.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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Cinquefoil Knot*

Parametric Formulas for the Cinquefoil Knot:

P.x := (2− cos(2 t/(2 aa + 1))) · cos(t);
P.y := (2− cos(2 t/(2 aa + 1))) · sin(t);
P.z := − sin(2 t/(2 aa + 1));

The choice aa = 1 gives a Trefoil knot, aa = 2 the Cinque-
foil, and in general aa = k gives the (2k+1)-foil knot (the
program rounds aa before using it). The parameter range
for t should be 0 to (4 k+2) π. If you change aa in the Set
Parameters... dialog, then these values of tMin and tMax
are set also, but you can change them later in the Set t,u,v
Ranges... dialog.

A nice animation of the Cinquefoil knot can be obtained
by first choosing Show As Tube from the Action menu,
Anaglyph Stereo Vision from the View menu, and then
Rotate from the Animation menu.
R.S.P.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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Trefoil Knot*

Parametric formulas for the Trefoil Knot:
x = 0.01 (41 cos(t)− 18 sin(t)− 83 cos(2 t)−

83 sin(2 t)− 11 cos(3 t) + 27 sin(3 t)) · hh
y = 0.01 (36 cos(t) + 27 sin(t)− 113 cos(2 t)+

30 sin(2 t) + 11 cos(3 t)− 27 sin(3 t)) · hh
z = 0.01 (45 sin(t)− 30 cos(2 t) + 113 sin(2 t)−

11 cos(3 t) + 27 sin(3 t)) · hh

The Trefoil knot, Figure 8 Knot, Granny Knot, Square
Knot, displayed by 3D-XplorMath are all harmonic or Fou-
rier knots. That is they are parametrized using finite
Fourier series for all three coordinates. The particular
parametrizations are taken from the 1995 PhD thesis of
Aaron Trautwein at The University of Iowa.
Compare the rotation of the Frenet frame along this trefoil
knot (defined with harmonic polynomials) and along the
trefoil that results when you select Torus Knot with the
parameters (dd=3, ee=2): Near the points on the torus
knot where the curvature is very small, the rotation speed
of the Frenet frame is large. - The Trefoil Knot can be
shown with a Satellite Knot, default dd = 55, ee = 2.
In stereo mode a Möbius band bounded by the Trefoil Knot
is added. Their handedness depends on the sign of hh.
R.S.P.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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Figure 8 Knot, Granny Knot, Square Knot*

The Trefoil knot, Figure 8 Knot, Granny Knot, Square
Knot, displayed by 3D-XplorMath are all harmonic or Fou-
rier knots. That is they are parametrized using finite
Fourier series for all three coordinates. The particular
parametrizations are taken from the 1995 PhD thesis of
Aaron Trautwein at The University of Iowa.
Satellite Knots can be added in the Action Menu to these
four knots.

The Figure 8 Knot is an alternating prime knot with min-
imal crossing number 4. It is the next simplest knot after
the Trefoil Knot.
Parametric formulas for the Figure 8 Knot:

x =(32 cos(t)− 51 sin(t)− 104 cos(2t)− 34 sin(2t)+
104 cos(3t)− 91 sin(3t))/100

y =(94 cos(t) + 41 sin(t) + 113 cos(2t)− 68 cos(3t)−
124 sin(3t))/140

z =(16 sin(t) + 138 cos(2t)− 39 sin(2t)− 99 cos(3t)−
21 sin(3t))/70

The Granny Knot and the Square Knot are not prime,
both are sums of two Trefoil Knots. The Square Knot has
a mirror symmetry so that one Trefoil is left handed the

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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other right handed. The Granny Knot is the sum of two
same-handed Trefoil Knots.

Parametric formulas for the Granny Knot:

x =(−22 cos(t)− 128 sin(t)− 44 cos(3t)− 78 sin(3t))/80
y =(−10 cos(2t)− 27 sin(2t) + 38 cos(4t) + 46 sin(4t))/80
z =(70 cos(3t)− 40 sin(3t))/100

Parametric formulas for the Square Knot:

x =(−22 cos(t)− 128 sin(t)− 44 cos(3t)− 78 sin(3t))/100
y =(11 cos(t)− 43 sin(3t) + 34 cos(5t)− 39 sin(5t))/100
z =(70 cos(3t)− 40 sin(3t) + 18 cos(5t)− 9 sin(5t))/100

R.S.P.
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Morph Through Five Prime Knots*

A prime knot is a knot that cannot be written as the knot
sum of smaller knots. For example, the Square Knot and
the Granny Knot are not prime since each is a sum of two
Trefoil Knots. There are 14 prime knots with at most
7 minimal number of crossings. They have been hand
drawn so often that they have assumed an esthetically de-
fined standard shape. Of these first 14 prime knots the
following ones are in a morphing family, the prime knots
31, 41, 52, 61, 72. Choose dd = 3 and 0 ≤ ff ≤ 4.3 in Set
Morphing and the program will deform the Trefoil Knot
through the following images:

If one chooses dd = 5 and 0 ≤ ff ≤ 2.3 in Set Mor-
phing then the program will deform the (5,2)-Torus Knot
through the following images of the prime knots 51, 62, 75:

The prime knot 74 is the default Lissajous space curve.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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There are 249 prime knots with at most 10 minimal num-
ber of crossings. One can visualize those via the Space
Curves Menu entry: V. Jones Braid List.
The notion of prime knot is important because Horst Schu-
bert proved that the decomposition of a knot as knot sum
(= connected sum) of prime knots is unique. The knot
invariants are a good way to check whether a given knot
is a prime knot.
There is an easy sufficient criterion that guarantees that
the knot under consideration cannot be drawn with fewer
crossings. First we define alternating and reduced alternat-
ing knots: if the thread of the knot passes alternatingly
through overcrossings and undercrossings then the knot is
called alternating. For example, if we twist a circle into a
figure 8 we obtain an alternating trivial knot. In this case
we observe an easily recognizable property of the crossing
in the knot diagram: if the crossing is removed the knot di-
agram decomposes into two components. A crossing with
this property is called an isthmus. Clearly, one can always
rotate one component of the knot diagram through 180
degrees, i.e. untwist and thereby remove the isthmus to
obtain a representation with fewer crossings. An alternat-
ing knot without an isthmus is called a reduced alternating
knot.
Theorem : Reduced alternating knots cannot be repre-
sented with fewer crossings, they are always non-trivial.
All prime knots with at most 7 crossings are reduced al-
ternating knots. H.K.

12



Lissajous Curves, e.g. the Prime Knot 74*

Lissajous curves are a popular family of planar curves,
resp. space curves. They are complicated enough to be
interesting, but regular enough to be esthetically pleasing.
They are described by simple formulas:

x(t) := aa · sin(2π · dd · t)
y(t) := bb · sin(2π · ee · t + gg)
z(t) := aa · sin(2π · ff · t + cc)

In 3DXM the parameters dd, ee, ff are rounded to inte-
gers so that the curves are closed on the interval [0, 1].
The default morph varies the phase gg from 0 to π/2. –
The Lissajous curves are also physically interesting, they
describe the joint motion of orthogonal uncoupled oscilla-
tors (x(t), y(t), z(t)) with different frequencies.
A prime knot is not a knot sum of smaller knots. E.g.
Square Knot and Granny Knot are not prime: each is a
sum of two Trefoil Knots. There are 14 prime knots with
the minimal number of crossings ≤ 7, see the documenta-
tion About This Object for V.Jones Braid List. The
4th 7-crossings-knot, the prime knot 74, is our default Lis-
sajous space curve, (dd, ee, ff, gg) = (2, 3, 7, π/2). – Other
alternating examples are: (dd, ee, ff) = (2, 5, 13), (4, 3, 23):

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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There are 249 prime knots with at most 10 minimal num-
ber of crossings. One can visualize those via the Space
Curves Menu entry: V.Jones Braid List.
The notion of prime knot is important because Horst Schu-
bert proved that the decomposition of a knot as knot sum
(= connected sum) of prime knots is unique. The knot
invariants are a good way to check whether a given knot
is a prime knot. There is no more elementary criterion to
recognize a knot as prime.
There is an easy sufficient criterion that guarantees that
the knot under consideration cannot be drawn with fewer
crossings. First we define alternating and reduced alter-
nating knots: if the thread of the knot passes alternatingly
through overcrossings and undercrossings then the knots is
called alternating. For example, if we twist a circle into a
figure 8 we obtain an alternating trivial knot. In this case
we observe an easily recognizable property of the crossing
in the knot diagram: if the crossing is removed the knot di-
agram decomposes into two components. A crossing with
this property is called an isthmus. Clearly, one can always
rotate one component of the knot diagram through 180 de-
grees, untwist and thereby remove the isthmus to obtain a
representation with one less crossings. An alternating knot
without an isthmus is called a reduced alternating knot.
Theorem : Reduced alternating knots cannot be repre-
sented with fewer crossings, they are always non-trivial.
H.K.
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Braid List Of Prime Knots *

A prime knot is a knot that cannot be written as the knot
sum of smaller knots. For example, the Square Knot and
the Granny Knot are not prime since each is a sum of two
Trefoil Knots. There are 249 prime knots with at most 10
minimal number of crossings. In 3DXM we use the braid
representation of knots. Vaughn Jones gave this list to
one of us in the 80s. The usual hand drawn versions are
prettier than the braids:

Copied from the article ’Prime Knot’ in Wikipedia.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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The above first 14 prime knots are all so called alternating
knots: if one follows the thread of the knot then one passes
– alternatingly(!) – overcrossings and undercrossings. A
knot that is represented as a “reduced” alternating knot
cannot be drawn with fewer crossings, in particular: a re-
duced alternating knot is always non-trivial. If one twists
a circle to a figure 8 then one obtains a non-reduced al-
ternating knot that is clearly trivial. Similarly, one can
take the alternating Granny Knot in 3DXM and turn one
of the Trefoil parts 180 degrees around the horizontal axis.
One obtains an alternating knot with an additional cross-
ing in the middle. Again, this knot is not reduced because
by cutting out the new crossing the knot diagram decom-
poses into two components. Such an easily recognizable
crossing is called an isthmus. One can always untwist an
isthmus and obtain a knot with one less crossing. A knot
diagram without an isthmus is called reduced.
The notion of prime knot is important because Horst Schu-
bert proved that the decomposition of a knot as knot sum
(= connected sum) of prime knots is unique.
All torus knots are prime knots. The genus 2 knots in
3DXM are sums of two torus knots.
The space curve ”Morph Prime Knots 5 4 3” has a default
morph that runs through the prime knots 3.1, 4.1, 5.2, 6.1,
7.2. If one changes dd from 3 to 5 then the ff-morph runs
through 5.1, 6.2, 7.5. The prime knot 7.4 is shown as a
Lissajous knot.
H.K.
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The Intersection of Two Cylinders *

The image shows the space curve defined implicitly as the
intersection of the two cylinders:

y2 + z2 = ff

and
(cos(aa)x + sin(aa)y)2 + (z − cc)2 = gg.

These two cylinders are made visible by displaying a ran-
dom set of dots on each of them. In the Action Menu one
can choose to put more random dots on the boundary of
the intersection of the two solid cylinders.
In the default settings the two cylinders touch and the
default morph rotates one of them by changing aa.
We find it interesting to change the radius of the smaller
cylinder while the cylinders keep touching: morph gg up
to ff while keeping dd = 0, since we compute (behind the
user)

cc =
√

ff −√gg + dd.

At gg = ff the intersection curve degenerates into two
ellipses (for each aa).
The distance between the tangent planes of the two cylin-
ders (at their common normal) is dd.
H.K.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/

17



Userdefined Implicit Space Curves*

The exhibit shows the intersection curve of two surfaces,
given by equations F1(x, y, z) = ff, F2(x, y, z) = gg.
To see also the surfaces (as dotted point clouds) choose the
corresponding entry in the Action Menu.
The initial dialogue offers three different defaults for the
surfaces given by F1, F2:
1.) A conic and a plane with the default morph tilting the
plane.
2.) The graph of a function R3 7→ R and a cylinder. This
exhibit can be used to explain extrema under side condi-
tions.
3.) A torus and a tangent plane. This is an example
where the intersection has double point singularities at
those points where the intersection of the surfaces is not
transversal.

By varying these defaults one can create a rich collection
of space curves. (The number of points in the point clouds
cannot be changed in this exhibit.)
H.K.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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About Spherical Curves*

In many ways there is a close analogy between planar Eu-
clidean geometry and two-dimensional spherical geometry.
In the ATO for spherical ellipses we translate the sum-of-
distances definition from the plane to the sphere and use
the same arguments as in the plane to construct points
and tangents of the curve. Similarly, in the ATO about
spherical cycloids, we roll spherical circles on spherical cir-
cles. Such analogies of course require basic notions which
correspond to each other.

Lines and Triangles
Straight lines in the plane are the shortest connections be-
tween their points. On the sphere the shortest connec-
tions are great circle arcs that are not longer than half
way around. A line cuts the plane into two congruent
half-planes that are interchanged by the reflection in the
line. Similarly, the sphere is cut by the plane of a great
circle into two congruent half-spheres, and the reflection in
the plane interchanges these two half-spheres. Therefore
we speak of the reflection (of the sphere) in a great circle.
These analogies are enough to translate the planar notion
straight line to the spherical notion great circle. Three
points A,B,C and three shortest connections of lengths
a, b, c make a triangle — in the plane or on the sphere.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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The angles at the points (or vertices) are denoted α, β, ∞.
For the plane, the basic triangle formulas are close to the
definition of sine and cosine:

c = a · cosβ + b · cosαProjection theorem:
b · sinα = hc = a · sinβSine theorem:
c2 = a2 + b2 − 2ab cos ∞Cosine theorem:

Note that the more complicated third formula follows from
the first two: Use the Sine theorem in the form 0 = b ·
sinα− a · sinβ and add the square of this to the square of
the Projection theorem. Simplify with cos2 +sin2 = 1 and
use the trigonometric identity cosα cosβ − sinα sinβ =
cos(α + β) = cos(π − ∞) = − cos(∞) to obtain the Cosine
theorem.

To derive similar formulas for spherical triangles, use ge-
ographic coordinates on the standard unit sphere, with
the polar center at the north pole C := (0, 0, 1). A point
A at spherical distance b from C satisfies hA,Ci = cos b.
Thus, after rotation into the x-z-plane, it has coordinates
A := (sin b, 0, cos b). A third point B at distance a from the
pole C and such that the angle 6 ACB equals ∞ has spher-
ical polar coordinates B := (sin a cos ∞, sin a sin ∞, cos a).
The spherical cosine formula follows by taking a scalar
product:

hA,Bi = cos c = cos a cos b + sin a sin b cos ∞.
The name is justified since a Taylor approximation up to
second order gives the corresponding formula for the plane.

20



For more details: note that the graph of the function
x → cosx lies above the graph of the quadratic func-
tion x → 1− x2/2 and not above any wider parabola
x → 1 − x2/(2 + ≤). Therefore 1 − x2/2 is called the
quadratic Taylor approximation of cos near x = 0. We
substitute this approximation for x = a, x = b, x = c,
and similarly sinx ≈ x, in the spherical cosine formula
and obtain:
cos c ≈ 1 − c2/2 ≈ (1− a2/2)(1− b2/2) + ab cos ∞, or
c2 ≈ a2 + b2 − 2ab cos ∞, which is the planar formula.

For a more systematic derivation we use the reflection R
which interchanges C,A and observe that R(B) has the co-
ordinates R(B) := (sin c cosα, sin c sinα, cos c). But R(B)
can also be computed from the reflection matrix and the
coordinates of B. Equating the two expressions gives three
formulas between a, b, ∞ on one side and c, α on the other
side. Of course these formulas hold for any permutation of
A,B,C:




− cos b 0 sin b

0 1 0
sin b 0 cos b



 ·




sin a cos ∞
sin a sin ∞

cos a



 =




− sin a cos b cos ∞ + cos a sin b

sin a sin ∞
cos a cos b + sin a sin b cos ∞



 =




sin c cosα
sin c sinα

cos c





.

We use for these formulas the same names as in the planar
case since an even simpler Taylor approximation simplifies
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also the first two equations to their planar counterparts:

sin c cosα =Projection theorem:
− sin a cos b cos ∞ + cos a sin b

sin c · sinα = sin a · sin ∞Sine theorem:
cos c = cos a cos b + sin a sin b cos ∞.Cosine thm:

A consequence of the first two theorems is the

Angle cosine: cos ∞ = − cosα cosβ + sinα sinβ cos c.

Application: Platonic Solids

Two-dimensional spherical geometry captures certain as-
pects of three-dimensional Euclidean geometry. For ex-
ample, if we project an icosahedron from its center to its
circumsphere then the 20 triangular faces of the icosahe-
dron are mapped to a tessellation of S2 by 20 equilateral
triangles whose angles are 72◦ because five triangles meet
at every vertex. From the angle cosine theorem we read
off the edge-length σ of these triangles, with α = 2π/5 we
have for the

Icosahedron: (cosα + cos2 α)/ sin2 α = cosσ.
Given the above spherical tools this is a conceptually very
simple construction.

Osculating Circles
At every point of a twice differentiable curve c on S2 one
can determine its osculating circle: the parametrized cir-
cle that agrees with c up to the second derivative at that
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point. While it is easy to place a ruler next to a curve
so that the ruler approximates a tangent line, one cannot
so easily guess these best approximating circles. For all
planar curves and space curves in 3DXM one can choose
Osculating Circles from the Action Menu and one can be-
lieve that the resulting images show best approximating
circles. In the case of spherical curves one observes that
these osculating circles actually lie on the sphere. To un-
derstand this, consider the usual osculating circle in R3

and intersect its plane, the osculating plane of the curve c,
with S2; this intersection circle is clearly a better approx-
imation of the curve than any other circle in this plane
and therefore it is the osculating circle. Although we can-
not yet describe the curvature of a curve by a real valued
function, we can already agree that, at each point, a space
curve is curved as strongly as its osculating circle. We call
the spherical radii of these circles the spherical curvature
radii and we are ready to translate geometric constructions
(with curves) from the plane to the sphere.

Parallel curves of a spherical curve c on S2. We define
η(t) := ċ(t)× c(t)/|ċ(t)| as the oriented spherical unit nor-
mal of c. The parallel curve at spherical distance ≤ is then
in complete analogy with the plane given as

Parallel Curves on S2 : c≤(t) := cos ≤ · c(t) + sin ≤ · η(t).

It is easy to check that the curvature radii of c≤ are ob-
tained by adding ≤ to the curvature radii of c — which is
what our intuition expects of parallel curves.
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Spherical Evolvents (also called involutes). For a physical
realization of an evolvent attach a string segment to the
curve and move the end point so that the string is always
tangent to the curve, in the forward or in the backward
direction. The Euclidean formula for the backwards evol-
vent is (assuming |ċ(t)| = 1)

e(t) := c(t)− (t− t0) · ċ(t), t ≥ t0.
A remarkable property of the evolvent is that t − t0 is its
curvature radius at e(t).
We translate this construction to the sphere. The formula
for the spherical evolvent is (assume again |ċ(t)| = 1)

e(t) := cos(t− t0) · c(t)− sin(t− t0) · ċ(t).
A short computation shows that the spherical curvature
radius at e(t) is t− t0, as in the plane. Also, it is true for
the plane and for the sphere that the segment from c(t) to
e(t) is orthogonal to ė(t), i.e., this segment is the curvature
radius of the evolvent at e(t).
Spherical Evolutes. For any given (planar or) spherical
curve c we call the curve of the (planar or) spherical mid-
points of the osculating circles of c the (planar or) spherical
evolute of c. In 3DXM this can best be seen in the demo for
Spherical Ellipses. In the previous paragraph we have seen
that, in the plane and on the sphere, the evolvent of the
evolute of c is this given curve c. Thus, the natural trans-
lations of notions from the plane to the sphere continue to
have natural properties.

What is Curvature?

More precisely, what real number should measure the size
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of the curvature at one point of the curve c, and which real
valued function should describe the curvatures of c? For
the plane, differential geometers have agreed to take the ro-
tation speed of a unit normal of c as the quantitative size of
its curvature. For example, the rotation speed of the unit
normal n of a circle of radius r (use arc length parametriza-
tion) is 1/r, since c(t) = r · (cos(t/r), sin(t/r)), |ċ(t)| = 1
and n(t) = (cos(t/r), sin(t/r)), hence ṅ(t) = (1/r) · ċ(t).
Although this is a good reason for taking 1/r as the cur-
vature of a circle of radius r in the plane, the argument
does not carry over to S2, since: What is the spherical ro-
tation speed of the spherical normal? Of course we could
also call on the sphere 1/curvature radius the curvature
of the curve. This is not a good idea on S2 since circles of
radius π/2 are great circles, i.e., shortest connections, and
we would expect them to have curvature 0. Fortunately,
there is for the plane another good reason for taking 1/r
as “the” curvature, and this time the corresponding com-
putation can be repeated on S2. If we imagine a family of
parallel curves then it looks as if the length grows faster if
the curvature is larger.
We can make this intuition more precise with a computa-
tion. First, in the plane:

c≤(t) := c(t) + ≤ · n(t), {ċ(t), n(t)} orthonormal
ċ≤(t) = ċ(t) + ≤ · ṅ(t), ṅ(t) = ∑(t) · ċ(t)
d

d≤
|ċ≤(t)|≤=0/|ċ(t)| = ∑(t).
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Here, the second line defines the curvature as the rota-
tion speed of the normal and the third line says that this
curvature function can also be computed as the change of
length of tangent vectors in a parallel family of curves. Of
course we can do the same computation as in line three for
spherical curves:

c≤(t) := cos ≤ · c(t) + sin ≤ · η(t)
ċ≤(t) = cos ≤ · ċ(t) + sin ≤ · η̇(t)
η̇(t) = c̈(t)× c(t)
|ċ≤(t)|/|ċ(t)| = hċ≤(t), ċ(t)i/hċ(t), ċ(t)i =
cos ≤ + sin ≤hη̇(t), ċ(t)i/hċ(t), ċ(t)i
d

d≤
|ċ≤(t)|≤=0/|ċ(t)| = −hη(t), c̈(t)i/hċ(t), ċ(t)i.

Before we take this as the definition of spherical curvature
for spherical curves we check which function of the radius
we get for circles of spherical radius r:

cr(t) = (sin r cos t, sin r sin t, cos r)

η(t) =
d

dr
cr(t) = (cos r cos t, cos r sin t,− sin r)

c̈r(t) = −(sin r cos t, sin r sin t, 0), finally:

− hη(t), c̈(t)i/hċ(t), ċ(t)i =
sin r cos r

sin2 r
= cot r.

This is a satisfying answer, since cot r behaves like 1/r for
small r and cot(r = π/2) = 0 as we expect for great circles.
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Now we are ready for the definition and we remark that the
historical name is geodesic curvature, not the more naive
spherical curvature which we used above.
Definition. The geodesic curvature ∑g(t) of a spherical
curve c(t) with spherical unit normal η(t) is

∑g(t) := −hη(t), c̈(t)i/hċ(t), ċ(t)i.

The Spherical Frenet Equation
Finally we observe that for a unit speed spherical curve c
we have the following natural orthonormal frame along the
curve:

(e1(t), e2(t), e3(t)) := (ċ(t), c(t), η(t)),

and the geodesic curvature controls the derivative of this
frame via the following spherical Frenet equation:

d

dt
ċ(t) = −1 · c(t)− ∑g(t) · η(t)

d

dt
c(t) = +1 · ċ(t)

d

dt
η(t) = +∑g(t) · ċ(t)

Observe that the coefficient matrix



0 −1 −∑g

1 0 0
∑g 0 0




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is skew symmetric. This fact implies that any solution
(e(t), f(t), g(t)) with orthonormal initial conditions stays
orthonormal. This says that t → f(t) is a spherical curve
parametrized by arclength (namely: |ḟ(t)| = |e(t)| = 1).
Moreover g(t) is orthogonal to f(t), ḟ(t) and therefore the
spherical unit normal of f . The third Frenet equation says
that the given function ∑g(t) (because of ġ(t) = ∑g(t) ·e(t))
is indeed the geodesic curvature of the curve t → f(t): to
any given ∑g(t) we have found a curve with that geodesic
curvature.
We repeat: from elementary distance and triangle geo-
metry to the differential geometry of curves we have ex-
plained a very close analogy between the Euclidean plane
and the sphere. The 3DXM demos try to emphasize this.
HK.
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Loxodrome*

A Loxodrome (also called a rhumb line) is a route that a
boat would take if it kept a constant compass heading (so
that on a Mercator projection it is simply a straight line).
To be more formal, a loxodrome is a path that lies on the
unit sphere in R3 and that makes a constant angle with
the great circles of longitude (i.e. the meridians). Thus
the loxodromes are analogous to the logarithmic spirals in
the (complex) plane, which make a constant angle with
the rays through the origin. In fact, since stereographic
projection from the complex plane to the unit sphere is
conformal (in other words: angle-preserving) and since the
stereographic projection of the radial lines in the plane are
the circles of longitude, it follows that the loxodromes are
given by stereographically projecting the logarithmic spi-
rals. On the other hand, since the exponential map of the
complex plane to itsself is conformal and maps the lines
parallel to the real axis to radial lines, it follows that the
logarithmic spirals are just the images under the exponen-
tial map of straight lines, i.e. the images of t 7→ (aa+ i) · t.
Hence we can define the loxodromes parametrically by

t 7→ StereographicProjection(exp((aa + i) · t)).
Note that the osculating circles all lie on the sphere.
R.S.P.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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The Viviani Curve *

The Viviani curve is the intersection of a sphere of radius
2 · aa and a cylinder of radius aa that touch at a single
point, the double point of the curve. Parametric formulas
for it are:

z = aa (1 + cos(t)) = aa 2 cos(t/2)2,
y = aa sin(t) = aa 2 sin(t/2) cos(t/2), and
x = aa 2 sin(t/2)

Implicit equations for the two intersecting surfaces are:
x2 + y2 + z2 = 4 aa2, a sphere of radius 2 aa,
(z − aa− bb)2 + y2 = aa2, a cylinder of radius aa.

The planar projections of this curve are therefore in gen-
eral curves of degree 4, but because of its symmetries the
Viviani curve has two orthogonal two-to-one projections
that are simpler; namely curves of degree 2. Indeed pro-
jecting it to the y-z-plane we get a twice covered circle (use
Settings Menu: Set Viewpoint and Up Direction 200,0,0),
projecting to the x-z-plane gives a twice covered parabolic
piece, (1− z/(2aa)) = (x/(2aa))2, while the projection to
the x-y-plane is the degree 4 figure 8 with the equation (for
aa = 1/2): x2 − y2 = x4.
Note that the osculating circles lie on the sphere.
R.S.P.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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About Spherical Cycloids*

See also the ATOs for Spherical Ellipses and for
Planar Rolling Curves, e.g. Astroid, Cardioid

Spherical Definition
( in analogy to planar case)

The spherical ellipses demonstrated already how defini-
tions from planar Euclidean geometry can be repeated on
the sphere; the demo illustrates that also spherical evolutes
are analogous to the planar ones. Rolling curves, spheri-
cal cycloids, provide more such examples: simply let one
spherical circle roll (on the inside or the outside) along an-
other spherical circle. Here roll means that the arclengths
(= angle at the center times sine of the spherical radius)
of corresponding arcs of the two circles agree. The true
rolling curves are obtained by looking at the curve traced
out by one point of the rolling circle, but, just as in the
plane, one may also look at the traces of other points on a
fixed radius, inside or outside the rolling circle — choose
bb different from 1 in the Settings Menu, Set Parameters
Dialog.

The rolling construction is illustrated by choosing Show
Rolling Circle in the Action Menu.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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Rolling curves have a very simple tangent construction.
The point of the rolling circle which is in contact with
the base curve has velocity zero – just watch cars going
by. This means that the connecting segment (which is a
piece of a great circle of the sphere) from this point of
contact of the wheel to the endpoint of the (great circle)
drawing stick is the (great circle) radius of the momentary
rotation. The tangent of the curve drawn by the draw-
ing stick is therefore orthogonal to this momentary radius.
The 3DXM-demo draws the rolling curve and shows its
tangents.
One can observe, for all spherical curves (in 3DXM: Vi-
viani, Spherical Ellipses, Spherical Cycloids, Loxodrome),
that the osculating circles lie on the sphere of the spheri-
cal curve by choosing Show Osculating Circle in the Action
Menu. To understand this, note, that the osculating circle
lies in the osculating plane (Action Menu!) and, of course,
no circle in a given osculating plane can be a better ap-
proximation of the curve than the intersection of this plane
with the sphere on which the curve lies.
H.K.
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About Spherical Ellipses*

See ATO for Planar Ellipses

In 3DXplorMath the Default Morph shows a family
of ellipses with fixed focal points F1, F2 as the larger axis
aa varies from its allowed minimum e = bb/2 to its allowed
maximum π − e = π − bb/2. Another interesting morph is
0.11 ≤ aa ≤ 1.43, 0.2 ≤ bb ≤ π − 0.2: the distance of the
focal points increases until they are almost antipodal and
the major axis is only slightly longer than the distance of
the focal points.

Elementary Definition. Many elementary con-
structions from planar Euclidean geometry have natural
analogues on the twodimensional sphere S2. For example,
we can take the definition of planar ellipses and use it on
the sphere as follows: Pick two points F1, F2 ∈ S2 of spher-
ical distance 2e := dist(F1, F2) < π and define the set of
points P ∈ S2 for which the sum of the distances to the
two points F1, F2 equals a constant =: 2a, i.e. the set:

{P ∈ S2; dist(P,F1) + dist(P,F2) = 2a},
to be a Spherical Ellipse.

In the Euclidean plane there is only one restriction between
the parameters of an ellipse: 2e < 2a. Since distances on

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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S2 cannot be larger than π we have two restrictions in
spherical geometry: 2e < 2a < 2π − 2e.
For fixed focal points, i.e. for fixed e, these curves cover
the sphere (we allow that the smallest and the largest el-
lipse degenerate to great circle segments). One observes
that the ellipse with 2a = π is a great circle and that el-
lipses with 2a > π are congruent to ellipses with 2a < π
and focal points −F1,−F2.
This is because dist(P,F ) = π − dist(P,−F ) implies

π < 2a = dist(P,F1) + dist(P,F2) ⇒
dist(P,−F1) + dist(P,−F2) = 2π − 2a < π.

Similarly, on the sphere one does not need to distinguish
between ellipses and hyperbolas:

{P ∈ S2; dist(P,F1) + dist(P,F2) = 2a} =

{P ∈ S2; dist(P,F1)− dist(P,−F2) = 2a− π}.

Practical Application. These curves are used
since more than 50 years in the LORAN System to de-
termine the position of a ship on the ocean as follows.
Consider a pair of radio stations which broadcast synchro-
nized signals. If one measures at any point P on the earth
the time difference with which a pair of signals from the
two stations arrives, then one knows the difference of the
two distances from P to the radio stations. Therefore sea
charts were prepared which show the curves of constant
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difference of the distances to the two radio stations. This
has to be done for several pairs of radio stations. In araes
of the ocean where the families of curves (for at least two
pairs of radio stations) intersect reasonably transversal it
is sufficient to measure two time differences, then a look
on the sea chart will show the ship’s position as the inter-
section point of two curves, two sperical hyperbolas. On
the site
http://webhome.idirect.com/...

˜ jproc/hyperbolic/index.html or

˜ jproc/hyperbolic/lorc−hyperbola.jpg
this is explained by the following map:
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Elementary Construction, 3DXM-demo

Begin by drawing a circle of radius 2a around F1 (called
Leitkreis in German). Next, for every point C on this cir-
cle we find a point X on the spherical ellipse as follows:
Let M be the midpoint of the great circle segment from C
to F2 and let T be the great circle through M and perpen-
dicular to that segment. In other words, T is the symme-
try line between C and F2. Finally we intersect T with the
Leitkreis radius from F1 to C in X. — Because we used
the symmetry line T we have dist(X,C) = dist(X,F2) and
therefore:

dist(X,F1) + dist(X,F2) = dist(X,F1) + dist(X,C)
= dist(C,F1) = 2a.

It is easy to prove that the great circle T is tangent to the
ellipse at the pointX.

Connection with Elliptic Functions

We met a family of ellipses all having the same focal points
(’confocal’) and also the orthogonal family of confocal hy-
perbolas in the visualization of the complex function z →
z +1/z. In the same way two orthogonal families of confo-
cal spherical ellipses show up in the visualization of ellip-
tic functions from rectangular tori to the Riemann sphere
(choose in the Action Menu: Show Image on Riemann
Sphere and in the View Menu: Anaglyph Stereo Vision).
— Note that in the plane all such families of confocal el-
lipses and hyperbolas are essentially the same, they differ
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only in scale. On the sphere we get different families for
different rectangular tori, i.e. for different quadrupels of
focal points {F1, F2,−F1,−F2}.

An Equation for the Spherical Ellipse

Abbreviate α := dist(X,F1), β := dist(X,F2). The defi-
nition of a spherical ellipse says:

cos(2a) = cos(α + β) = cosα cosβ − sinα sinβ.

with cosα = hX,F1i, cosβ = hX,F2i.

We want to write the equation in terms of the scalar prod-
ucts which are linear in X. Therefore we replace sin2 =
1− cos2 to get:

(1− cos2 α)(1− cos2 β) = (cosα cosβ − cos(2a))2

or

1− cos2 α− cos2 β = −2 cos(2a) cosα cosβ + cos2(2a)
or, by replacing the cosines by the scalar products:

sin2(2a)hX,Xi − hX,F1i2 − hX,F2i2 =
− 2 cos(2a) · hX,F1i · hX,F2i.

Observe that this is a homogenous quadratic equation in
X = (x, y, z). In other words: Our spherical ellipse is
the intersection of the unit sphere with a quadratic cone
whose vertex is at the midpoint of the sphere. So we get
the surprisingly simple result: If one projects a spherical
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ellipse from the midpoint of the sphere onto some plane
then one obtains a (planar) conic section.

H.K.
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Space Curves of Constant Curvature *

2 - 11 Torus Knot of
constant curvature.

See also:
About Spherical Curves

Definition via Differential Equations. Space Curves that
3DXM can exhibit are mostly given in terms of explicit for-
mulas or explicit geometric constructions. The differential
geometric treatment of curves starts from such examples
and defines geometric properties, i.e., properties which do
not change when the curve is transformed by an isometry
(= distance preserving map, also called a rigid motion) of
Euclidean space R3. The most important such properties
are the curvature function ∑ and the torsion function τ .
Once they have been defined one proves the Fundamental
Theorem of Space Curves, which states that for any given
continuous functions ∑, τ there is a space curve with these
curvature and torsion functions, and, that this curve is
uniquely determined up to a rigid motion.

To define curvature, observe that at each point of a parame-
trized space curve c(t) there is a parametrized circle ∞(t)

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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with
c(t0) = ∞(t0), ċ(t0) = ∞̇(t0), c̈(t0) = ∞̈(t0).

This circle – which may degenerate to a straight line – is
called the osculating circle at t0, its radius is called cur-
vature radius at t0 and the inverse of the radius is called
the curvature at t0, ∑(t0). The computation of curvature
is simpler if the curve is parametrized by arc length, i.e. if
the length of all tangent vectors is one, |ċ(t)| = 1. One
gets ∑(t) = |c̈(t)|. Check this for the circle (arclength
parametrization) c(t) := r · (cos(t/r), sin(t/r)). The most
common way to proceed is to assume that ∑(t) > 0. This
allows one to define the Frenet basis along the curve:

e1(t) := ċ(t),
e2(t) := c̈(t)/∑(t),
e3(t) := e1(t)× e2(t).

The Frenet basis defines three curves t 7→ ej(t) on the unit
sphere. To emphasize the fact that ej(t) are to be consid-
ered as vectors, not as points, one calls the length of their
derivative, |ėj(t)|, angular velocity or rotation speed and
not just velocity. For example, the formula c̈(t) = ∑(t)e2(t)
says that ∑(t) is the rotation speed of ċ(t). Next, we get
from ė1(t) ∼ e2(t) that the derivative of e3(t) is propor-
tional to e2(t). This proportionality factor, the rotation
speed of e3(t), is called the torsion function τ(t) of the
curve c(t). In formulas: τ(t) := hė3(t), e2(t)i.

Now one changes the point of view and considers the two
functions ∑, τ as given. This turns the equations that were
originally definitions of ∑ and τ into differential equations,
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the famous
Frenet-Serret Equations:
ė1(t) = ∑(t) · e2(t),
ė2(t) = −∑(t) · e1(t)− τ(t) · e3(t),
ė3(t) = τ(t) · e2(t),

or, with ~ω(t) := −τ(t) · e1(t) + ∑(t) · e3(t),
ėj(t) = ~ω(t)× ej(t).
ċ(t) = e1(t).Finally

For given continuous functions ∑, τ these differential equa-
tions have — for given orthonormal initial values — unique
orthonormal solutions {e1(t), e2(t), e3(t)}.
The curve c(t) :=

R t
e1(s)ds is then parametrized by arc

length and has the given curvature functions ∑, τ .

The simplest curves in the plane, straight lines and circles,
have constant curvature. One may wonder what constant
curvature curves look like in R3. In 3DXM we illustrate the
use of the Frenet-Serret equations by showing the following
family of constant curvature curves:

∑(t) := aa,

τ(t) := bb + cc · sin(t) + dd · sin(2t) + ee · sin(3t).
The function τ is, if bb = 0, skew symmetric at its zeros at
0 and π. This implies that the solution curves are symmet-
ric with respect to the normal planes at these points. From
this it follows that we can get closed nonplanar curves of
constant curvature easily: the only requirement is that the
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angle of the normal planes at c(0) and c(π) has to be a ra-
tional multiple of π. Every bb = 0 one-parameter family of
examples in 3DXM therefore contains many closed exam-
ples — select in the Animation Menu the default morph.

In the less symmetric case bb =/ 0 (but dd = 0) the func-
tion τ is even at the maxima and the minima, at t =
π/2, t = 3π/2, and this implies that 180◦ rotation around
e2 at these points is also a symmetry of solution curves.
This can be used to find more closed curves by solving 2-
parameter problems as follows: For every value of aa, bb
use cc to make the distance between the normals 0. Now
change aa or bb slowly (continuing to use cc for keeping
the distance between the normals 0) and observe how the
angle between the symmetry normals varies. If this angle
hits a value 2k/n · π then n copies of the computed piece
fit together to a smoothly closed curve.
If one has selected ’Constant Curvature’ in the Menu ’Space
Curves’ then there is in the Action Menu an entry ’Other
Closed Curves’. It opens a submenu where one can select
first bb = 0 examples which are also hit by the default
morph. Then there are bb =/ 0 embedded examples, some
of them knotted. Moreover, the 11-2-knot has nonvanish-
ing torsion and strongly resembles a torus knot. This is no
coincidence since one can find constant curvature curves
on tori by solving a second order ODE, and it is again a
2-parameter problem to close these up. – The example
’like 6 helices’ looks in another way as one would imagine
constant curvature curves: made up of left winding and
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right winding pieces of helices.
Do not miss to select ’Show Osculating Circles & Evo-
lute’. The constant radius of the osculating circles shows
the constant curvature and the rotating motion of the ra-
dius shows size and sign of the torsion.

In 3DXM one can choose in the Action Menu ’Parallel
Frame’.This frame is designed to rotate as little as possible
along the curve, in R3. This property is more obvious when
one looks at the torus knots than at the constant curvature
curves. For further details see curves of constant torsion.
The main advantage of these parallel frames is that they
neither make it neccessary to assume more than continuity
of the second derivative c̈, nor that ∑ > 0 everywhere, even
straight lines are not exceptional curves if one works with
these frames. Their differential equation is also simple:

Frenet-Serret Equations for Parallel Frames:
ė1(t) := a(t) · e2(t) + b(t) · e3(t),
ė2(t) := −a(t) · e1(t),
ė3(t) := −b(t) · e1(t).

With an antiderivative T (t) of the torsion τ(t) = T 0(t) we
can of course write the twodimensional curvature vector
(a(t), b(t)) in terms of ∑(t), τ(t), namely:

(a(t), b(t)) := ∑(t)
°
cos(T (t)), sin(T (t))

¢
.

H.K.
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About Space Curves of Constant Torsion *

See also: About Space Curves of Constant Curvature

Definition via Differential Equations

Most Space Curves that 3DXM can exhibit are given in
terms of explicit formulas or explicit geometric construc-
tions. In “About Space Curves of Constant Curvature”
we explain how curvature and torsion of a space curve
are defined. The definition immediately translates into a
construction of the curve from curvature and torsion via
the following differential equations, the famous

Frenet-Serret Equations:
ė1(t) := ∑(t) · e2(t),
ė2(t) := −∑(t) · e1(t)− τ(t) · e3(t),
ė3(t) := τ(t) · e2(t).

For given continuous functions ∑, τ these differential equa-
tions have — for given orthonormal initial values — unique
orthonormal solutions {e1(t), e2(t), e3(t)}. The curve c(t) :=R t

e1(s)ds is then parametrized by arc length and has the
given curvature functions ∑, τ .
The simplest curves in the plane are straight lines and cir-
cles, curves of constant curvature. It is therefore natural to
discuss also space curves of constant curvature. In 3DXM

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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we illustrate these by finding closed examples in the fol-
lowing family:

∑(t) := aa,
τ(t) := bb + cc · sin(t) + dd · sin(2t) + ee · sin(3t).

To understand the Frenet-Serret equations better one can
also study other special cases. Experimentation shows that
the following curves of constant torsion

∑(t) := bb + cc · cos(ff · t) + dd · cos(2ff · t)+
ee · cos(3ff · t)

τ(t) = aa
have an amusingly strong change of shape as one changes
the parameters. Again we look for closed examples with
the help of symmetries. Note that 180◦ rotations around
the principal normals e2(t) at t/ff = kπ, k ∈ Z are isome-
tries of the curves. At t/ff = π/2 + kπ, k ∈ Z the 180◦
rotations around the other normal vector of the frame,
e3(t), are also isometries of the space curve. This allows
us to formulate the closing condition:
If the normals e2(0) at c(0), e3(π ·ff/2) at c(π ·ff/2) in-
tersect and if their angle is a rational multiple of π then
the space curve closes up. Numerically one can use the
parameter cc to keep the angle constant, e.g. at π/3, π/4,
and then use aa to let the normals intersect. There are
many closed solutions. Typically they look like a collec-
tion of bed springs which are joint by fairly straight pieces.
If one allows these bed springs to have many turns then
the closing values of aa and cc are almost equidistant. The
default morph of 3DXM shows this, it contains two closed
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and three approximately closed curves which are made of
three bed springs with an increasing number of turns. It is
easy to extend this family to springs with more turns, but
one can also find all the small values, down to just one half
turn for each spring. — We found no closed curves made
of only two springs.
Here is a list of numerically closed curves:
Curves with 3-fold symmetry, ff = 0.208,

aa, 0.178632213, 0.284031845, 0.417033334,
cc, 0.2874008, 0.90658882, 2.19234962,
aa, 0.513441035, 0.59263462, 0.628044,
cc, 3.489480574, 4.7901189, 5.4411264,
aa, 0.661324546, 0.69281176, 0.7227614
cc, 6.09244336, 6.7440016, 7.39575343

Curves with 4-fold symmetry, ff = 0.23,

aa, 0.2137654757, 0.3704887, 0.479019355,
cc, 0.234123448, 0.89640923, 1.59595534,
aa, 0.56642393, 0.6414483533, 0.7081321561,
cc, 2.30473675, 3.01756515691, 3.732639742,
aa, 0.76871766, 0.8246012, 0.87671763
cc, 4.449136, 5.1666082, 5.8847911

Curve with 5-fold symmetry, ff = 0.2324,
aa = 0.73855871446286, cc = 2.96466
If ones does not begin with the differential equation but
starts from the curve, then one cannot define the torsion
at points where the curvature vanishes. This problem is
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caused by the use of the Frenet frame. Another frame
is suggested by a mechanical consideration: If a massive
sphere would move along the space curve (imagine the
space curve as a wire and the sphere with a hole through
which the wire slides without friction) then inertia would
make the sphere avoid unnecessary rotations around the
wire. In other words: A frame which is attached to the
sphere so that it is normal to the wire remains normal
and the derivatives of the normal vectors have no nor-
mal components. Such frames are called “parallel as nor-
mal vectors”, or simply “parallel frames”. In 3DXM one
can choose Parallel Frame in the Action Menu . Now
Show Curve as Tube illustrates the behaviour of the cho-
sen frame. In particular the torus knots show how the
parallel frames avoid “unnecessary” rotations which the
Frenet frames must make.
An advantage of such parallel frames is that they neither
require to assume more than two continuous derivatives of
the curve nor that ∑ never vanishes—even straight lines
are not exceptional curves if one works with these frames.
Let φ(t) be an antiderivative of the torsion function, i.e.,
φ̇(t) = τ(t). Then the differential equation that determines
this frame has the following simple form:

Frenet-Serret Equations for Parallel Frames:
ė1(t) := ∑(t) cos(φ(t)) · e2(t) + ∑(t) sin(φ(t)) · e3(t)
ė2(t) := −∑(t) cos(φ(t)) · e1(t)
ė3(t) := −∑(t) sin(φ(t)) · e1(t). H.K.
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Free Rotational Motion of Rigid Bodies *

Part I: Angular Velocity and Rigid Motion

In this first part we will not yet consider solid objects with
their inertial properties, but only so-called rigid body kine-
matics, i.e., the study of rotational motions of space. The
(simpler) particle mechanics analogue of the question that
we will discuss is the following: knowing the velocity curve
v(t) of a point how can we reconstruct the travel path c(t)?
Since c0(t) = v(t), c(t) is an antiderivative of v(t) and we
can find it easily by integration. (Historically v(t) was
called the hodograph of the motion.)

Things to try in 3D-XplorMath

The last three entries of the Action Menu of Space Curves
show demos that illustrate the present discussion. The
first of these Actions, Use Curve as Hodograph, interpretes
the space curves of 3D-XplorMath as velocity curves of a
particle and reconstructs the path. The demo emphasizes
that the tangent vector of the constructed path is (paral-
lel to) the position vector of the selected space curve, the
hodograph.
The second of these Actions, Use Curve as Angular Ve-
locity ~ω(t), reconstructs the rotational motion which has
the given space curve as given angular velocity function.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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The visualization of the motion uses a sphere with random
dots and shows several consecutive points of the orbit of
each random dot. One sees large orbit velocities near the
equator of the rotation and small velocities near the axis of
the rotation at each moment. – More details are explained
below.
The third of these Actions, Use Curve as Components of
~ω(t) in the Moving System, again reconstructs that rota-
tional motion that has its angular velocity given in the
moving system by the selected space curve. The space
curve therefore rotates with the motion. It leaves a trace
behind which shows the corresponding angular velocity
curve in the observer’s space. In the second Action this
curve was the given one.
Finally, there is one very special space curve, Solid Body
(Euler’s Polhode). If this space curve is selected for the
third Action above then the resulting motion is the physi-
cal motion around the center of mass of a rigid body, taken
to be a brick with edge lengths aa ≥ bb ≥ cc and initial
components of the angular momentum dd, ee, ff , see the
ATO of Solid Body.

Angular Velocity given in the Observer’s Space

Mathematicians and Physicists have slightly different pic-
tures of a motion in their minds. A physicist sees a solid
object moving in space, the movement is differentiable and
all points ~xi(t) of the moving object have their orbit ve-
locities ~xi

0(t). So far these functions could also describe a
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mass of moving air. The word rigid motion means that the
pairwise distances |~xi(t)−~xj(t)| remain constant in time –
the points ~xi(t) could be the atoms of a stone. For a math-
ematician on the other hand the primary concept is that
of a distance preserving map of space, and a motion is a
1-parameter family of such maps. For physicists and math-
ematicians it is important to understand the velocity fields
~xi

0(t) of all the particles. Physicists begin by studying ro-
tations around fixed axes with constant angular velocities.
In such a situation one can compute all the velocities ~xi

0(t)
from one vector ~ω that is parallel to the rotation axis and
from the particle positions ~xi(t) as follows:

~xi
0(t) = ~ω × ~xi(t).

It is now a mathematical fact that differentiable families of
distance preserving maps have a very similar formula for
the velocities of the particles: For each time t there exists
a vector ~ω(t) such that we have:

~xi
0(t) = ~ω(t)× ~xi(t).

And vice versa, if such a relation between the velocities and
the positions holds then all pairwise distances between the
particles are constant in time. Therefore mathematicians
and physicists agree that a differentiable rigid motion is
characterized by this relation between particle positions
and particle velocities.

Now, a natural question is: If ~ω(t) is a given vector function
in R3, how can one reconstruct the rotational motion? We
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answer this question by constructing a so called moving
frame {~ex(t), ~ey(t), ~ez(t)}, a time dependent orthonor-
mal basis. To do this we have to solve the following three
ODEs:

~ex
0(t) = ~ω(t)× ~ex(t), ~ex(0) = (1, 0, 0)

~ey
0(t) = ~ω(t)× ~ey(t), ~ey(0) = (0, 1, 0)

~ez
0(t) = ~ω(t)× ~ez(t), ~ez(0) = (0, 0, 1).

Next we observe that all linear combinations with constant
coefficients, i.e.
~x(t) := x · ~ex(t) + y · ~ey(t) + z · ~ez(t) satisfy
~x 0(t) = ~ω(t) × ~x(t) and are therefore orbits of the rota-
tional motion defined by the angular velocity ~ω(t).
To visualize this motion observe that for each fixed t the
velocity field ~v(~x) := ~ω(t) × ~x is the velocity field of the
ordinary rotation around the axis ~ω(t)R with constant an-
gular velocity |~ω(t)|.

Angular Velocity given in the Moving Space

What could it mean to give the angular velocity of a mo-
tion in moving space? We saw in the previous discus-
sion that we can describe the motion of space by giv-
ing a moving frame {~ex(t), ~ey(t), ~ez(t)}. The particles
of moving objects have position vectors that have con-
stant components ax, ay, az relative to this frame: ~xi(t) =
ax~ex(t)+ay~ey(t)+az~ez(t). Similarly we can prescribe ~ω(t)
by giving its components relative to the moving frame:

{ωx(t), ωy(t), ωz(t)}.
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There is again a natural question: can we again reconstruct
a corresponding rotational motion for any vector function
~ω(t) that is given in this way?

The answer is almost the same as for the first question,
except that the three ODEs are no longer separate but are
coupled by the fifth line:

~ex
0(t) = ~ω(t)× ~ex(t), ~ex(0) = (1, 0, 0)

~ey
0(t) = ~ω(t)× ~ey(t), ~ey(0) = (0, 1, 0)

~ez
0(t) = ~ω(t)× ~ez(t), ~ez(0) = (0, 0, 1)

with
~ω(t) = ωx(t) · ~ex(t) + ωy(t) · ~ey(t) + ωz(t) · ~ez(t).

Historical note: The given curve {ωx(t), ωy(t), ωz(t)} in
the moving system is called the polhode of the motion and
the corresponding curve ~ω(t) = ωx(t) ·~ex(t)+ωy(t) ·~ey(t)+
ωz(t) · ~ez(t) in the inertial space is called the herpolhode.
The moving polhode and the fixed herpolhode touch each
other at each time t with tangents of equal length – because
the points on the momentary axis of rotation, ~ω(t)R, have
at time t the rotational velocity field ~ω(t) × ~ω(t) = ~0 in
R3. A visual interpretation of this fact is that the moving
polhode rolls without slipping along the fixed herpolhode.
(This description actually determines the rotational mo-
tion because the origin is fixed so that the polhode has no
freedom to rotate around the common tangent with the
herpolhode, there is only one way to roll along.)
H.K.
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Free Rotational Motion of Rigid Bodies *

What is to observe in the 3D-XplorMath exhibit
Solid Body (Euler’s Polhode) ?

A brick – in the program of edge lengths aa ≥ bb ≥ cc ≥ 0
– is a good example of a solid (also: rigid) body. The
program illustrates the free rotational movement of such a
brick (i.e. gravity is ignored):
Select Solid Body (Euler’s Polhode), stop the alternation
between two pictures by a mouse click and select Do Poinsot
Construction From Polhode at the bottom of the Action
Menu. The resulting animation shows a freely tumbling
brick. By changing aa, bb, or cc one may watch other bricks
tumbling.
There are three other input parameters, dd, ee, ff . These
are initial conditions for the tumbling motion. If one uses
(dd, ee, ff) ≈ (1, 0.1, 0.1) or (dd, ee, ff) ≈ (0.1, 0.1, 1) then
there is not much tumbling. These motions are almost ro-
tations around the longest axis (aa) of the brick, respec-
tively the shortest axis (cc) . The fact that these rotation
axes stay close to their initial position is expressed by say-
ing: the rotations around the longest and the shortest axis
are stable. Now look again at the default initial conditions
(dd, ee, ff) ≈ (0.1, 1, 0.1). One observes that the momen-

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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tary axis of rotation moves almost to the direction opposite
to the initial direction and then returns back. One says:
the rotation around the middle axis of the brick is unstable.
– By putting a tape around a book and trying to throw
it so that it rotates around one of the three axes one can
experimentally test these theoretical predictions.

The explanation of this behaviour has a mathematical part
and a physical part. The physical part is contained in the
initial picture, the mathematical part is the connection
between the initial picture and the annimation. We explain
the mathematical part in

Part I: From Angular Velocity to Rotational Motion

It is available in the Topics part of the Documentation.
This mathematical part has no physical limitations, any
of the space curves in the program can be used as angular
velocity curve and in the Action Menu one can select ani-
mations that show the resulting motions.
The physical part requires in addition to angular velocity
the physical notions tensor of inertia and angular momen-
tum. These are explained below. What can one say before
this theory about the initial picture of the program? We
see two space curves. The one on the sphere is the angular
momentum as a function of time in the coordinate system
of the brick. The other one is the angular velocity curve
(called Polhode). Both are intersections of quadratic sur-
faces, represented by dots in the picture. The two curves
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are related by a fixed linear map – given by the tensor of
inertia. To emphasize this linear map the quadratic sur-
faces alternate between the domain and the range of this
map. Finally, these two curves together determine Eu-
ler’s differential equation for either of them. For example
the derivative of the angular momentum curve is the cross
product of the corresponding position vectors of the an-
gular momentum curve and the angular velocity curve, in
formulas: ~̀0(t) = ~̀(t)×~ω(t). The Action Menu entry Show
Repère Mobile and ODE illustrates this connection. The
dotted curves on the sphere are solutions for other initial
conditions dd, ee, ff with the same value dd2 + ee2 + ff2.
The default morph varies bb between aa and cc, it illus-
trates how the family of polhodes depends on the shape of
the brick.
And here is the theory:

Part II: Tensor of Inertia and Angular Momentum

The tensor of inertia is a map that transforms angular ve-
locity into angular momentum.
Historical note: The word tensor is a generic word that
describes objects from linear algebra that can be given by
components (indices!) with respect to a base. The tensor
of inertia is a linear map from the 3-dim vector space of
angular velocities to the 3-dim vector space of angular mo-
menta. What we need below is that for each solid body
there exists an orthonormal frame {~ex(t), ~ey(t), ~ez(t)} in
the rest space of the body (i.e. moving with the body) so
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that the tensor of inertia Θ is a diagonal map:

angular momentum = Θ(~ω(t)) =
ωx(t) · Θx~ex(t) + ωy(t) · Θy~ey(t) + ωz(t) · Θz~ez(t).

Θx,Θy,Θz are called principal moments of inertia.

We now explain the tensor of inertia in some more de-
tail. The result of the explanation will be the above for-
mula for the angular momentum. We view a solid body
as a collection of points of mass mi and position vector
~xi(t); the pairwise distances between these points are con-
stant. The origin is the center of mass of these points,
i.e.

P
i mi~xi(t) = ~0. For each mass point we have the fol-

lowing definitions, the corresponding notions for the solid
body are obtained by summation:
linear momentum: ~pi(t) := mi~xi

0(t)
angular momentum with respect to the origin:

~̀
i(t) := ~xi(t)× ~pi(t)

kinetic energy: Ei(t) := 1
2mih~xi

0(t), ~xi
0(t)i.

The body is rigid, i.e. the distances between the points
are constant, therefore there is an angular velocity func-
tion ~ω(t) that relates the positions and velocities:
rotational motion: ~xi

0(t) = ~ω(t)× ~xi(t).
angular momentum: ~̀

i(t) = ~xi(t)× (~ω(t)× ~xi(t)).
=: Θi(~ω(t)).

This tensor of inertia is most easily understood if we use
the relation between cross-product and matrix-product and
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insert it into the above definitions. We obtain the expres-
sions for angular momentum and kinetic energy in terms
of the tensor of inertia and the angular velocity as follows:

~ω × ~x =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 ·




x
y
z





=




0 z −y
−z 0 x
y −x 0



 ·




ωx

ωy

ωz





We obtain

~̀
i(t) =

mi




0 zi −yi

−zi 0 xi

yi −xi 0








0 −zi yi

zi 0 −xi

−yi xi 0








ωx

ωy

ωz





= mi




y2

i + z2
i −xiyi −xizi

−xiyi y2
i + z2

i −yizi

−xizi −yizi x2
i + y2

i








ωx

ωy

ωz





= Θi(~ω) (Note the symmetry of the matrix of Θi).

Ei(t) =
1
2
hΘi(~ω), ~ωi.

The symmetry of Θ :=
P

i Θi implies that we have an
orthonormal eigen basis for Θ. The corresponding eigen
values are the principal moments of inertia, Θx,Θy,Θz.
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Finally, we will derive Euler’s equations, a first order ODE
for ~ω(t). Together with part I this determines the motion
of a solid body that rotates without exterior forces. We
will always take the eigen basis of Θ as the moving frame
of part I.

Newton’s laws imply that the total angular momentum is
constant in situations that are more general than the force
free rotation of a solid body. We omit this general theory
and show only that the conservation of angular momentum
is equivalent to Euler’s equations.

~̀(t) :=
X

i

~̀
i(t) = Θ(~ω(t)) =

X

ξ∈{x,y,z}

ωξ(t)Θξ~eξ(t)

implies
d

dt
~̀(t) =
X

ξ∈{x,y,z}

ωξ(t) 0Θξ~eξ(t) +
X

ξ∈{x,y,z}

ωξ(t)Θξ~eξ
0(t).

Insert ~eξ
0(t) = ~ω(t)× ~eξ(t) to get

X

ξ∈{x,y,z}

ωξ(t)Θξ~eξ
0(t) = ~ω(t)× ~̀(t),

next compute the cross product in the base given by the
moving frame:

~ω(t)× ~̀(t) =
X

ξ∈{x,y,z}








ωx

ωy

ωz



×




`x

`y

`z









ξ

· ~eξ(t),
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finally compare coefficients to get Euler’s equations:




`x

`y

`z




0

=




Θxωx

Θyωy

Θzωz




0

= −




ωx

ωy

ωz



×




`x

`y

`z



 ,

where the physics is contained in the relation
between ω and ` :
`x = Θxωx, `y = Θyωy, `z = Θzωz.

Considered as differential equation for the ω-components
these are Euler’s equations. This ODE-system implies im-
mediately that the two quadratic functions

|~̀ |2 = `2x + `2y + `2z = Θ2
xω2

x + Θ2
yω2

y + Θ2
zω

2
z and

2E = `xωx + `yωy + `zωz = Θxω2
x + Θyω2

y + Θzω
2
z

are constant along solution curves. The solutions are there-
fore intersections of two ellipsoids. If one considers the
ODE-system as differential equations for the `-components
then one of the ellipsoids is a sphere and the solutions
(`x(t), `y(t), `z(t)) are spherical curves. The choice of the
`-components as the functions to be determined therefore
simplifies the visualization and also leads to a slightly sim-
pler ODE-system, since the tensor of inertia enters only on
the right side, linearly, into the equations.
H.K.
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User Curves By Curvature And Torsion*

The exhibit allows to create examples for the standard
Frenet theory of space curves. The initial dialogue allows
to input user choices for curvature and torsion as functions
of arc length, ∑(s), τ(s).
The solution curves are programmed as if they were explic-
itly parametrized. Therefore all the Action Menu entries
for parametrized curves are also available for these ODE-
defined curves.

The differential equations in question are the famous

Frenet-Serret Equations:
ė1(t) := ∑(t) · e2(t),
ė2(t) := −∑(t) · e1(t)− τ(t) · e3(t),
ė3(t) := τ(t) · e2(t).

For given continuous functions ∑, τ these differential equa-
tions have — for given orthonormal initial values — unique
orthonormal solutions {e1(t), e2(t), e3(t)}.
The curve c(t) :=

R t
e1(s)ds is then parametrized by arc

length and has the given curvature functions ∑, τ .
H.K.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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Userdefined Parametrized Space Curves*

These exhibits allow to input userdefined explicitly para-
metrized space curves in three different ways:
1.) User Cartesian: The three Cartesian coordinate func-
tions x(t), y(t), z(t) can be entered (Of course t does not
have to be arc length.)
2.) User Polar: The coordinate functions can be entered
in spherical polar coordinates r(t), θ(t), ϕ(t). In particular,
this allows to enter spherical curves. As usual:
x = r · sin θ · cosϕ, y = r · sin θ · sinϕ, z = r · cos θ.
3.) User Cylindrical: The coordinate functions can be
entered in cylindrical coordinates r(t), θ(t), z(t), with the
usual convention x = r · cos θ, y = r · sin θ, z = z.
Since Cylinders are isometric to the plane, this allows to
create space curves that are given on all the cylinders
r = const by the same intrinsic geodesic curvature data
∑g(s).
H.K.

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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