
Symmetries Of Elliptic Functions*

[The approach below to elliptic functions follows
that given in section 3 of ”The Genus One Helicoid
and the Minimal Surfaces that led to its Discovery”,
by David Hoffman, Hermann Karcher, and Fusheng
Wei, published in Global Analysis and Modern Math-
ematics, Publish or Perish Press, 1993. For conve-
nience, the full text of section 3 (without diagrams)
has been made an appendix to the chapter on the
Conformal Map Category in the documentation of
3D-XplorMath.]

An elliptic function is a doubly periodic meromorphic func-
tion, F (z), on the complex plane C. The subgroup L of C
consisting of the periods of F (the period lattice) is isomor-
phic to the direct sum of two copies of Z, so that the quo-
tient, T = C/L, is a torus with a conformal structure, i.e.,
a Riemann surface of genus one. Since F is well-defined
on C/L, we may equally well consider it as a meromorphic
function on the Riemann surface T .

It is well-known that the conformal equivalence class of
such a complex torus can be described by a single complex
number. If we choose two generators for L then, without
changing the conformal class of C/L, we can rotate and
scale the lattice so that one generator is the complex num-
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ber 1, and the other, τ , then determines the conformal class
of T. Moreover, τ1 and τ2 determine the same conformal
class if and only if they are conjugate under SL(2, Z).

The simplest elliptic functions are those defining a degree
two map of T to the Riemann sphere. We will be con-
cerned with four such functions, that we call JD, JE, JF,
and WP. The first three are closely related to the classical
Jacobi elliptic functions, but have normalizations that are
better adapted to certain geometric purposes, and simi-
larly WP is a version of the Weierstrass ℘-function, with
a geometric normalization. Any of these four functions
can be considered as the projection of a branched cover-
ing over the Riemann sphere with total space T , and as
such it has four branch values, i.e., points of the Riemann
sphere where the ramification index is two. For JD there
is a complex number D such that these four branch values
are {D,−D, 1/D,−1/D}. Similarly for JE and JF there
are complex numbers E and F so that the branch values
are {E,−E, 1/E,−1/E} and {F,−F, 1/F,−1/F} respec-
tively, while for WP there is a complex number P such that
the branch values are {P,−1/P, 0,1}. The cross-ratio, ∏,
of these branch values (in proper order) determines τ and
likewise is determined by τ .

The branch values E, F, and P of JE, JF, and WP can be
easily computed from the branch value D of JD (and hence

2



from dd) using the following formulas:

E = (D − 1)/(D + 1), F = −i(D − i)/(D + i),

P = i(D2 + 1)/(D2 − 1),

and we will use D as our preferred parameter for describing
the conformal class of T . In 3D-XplorMath, D is related
to the parameter dd (of the Set Parameter... dialog) by
D = exp(dd), i.e., if dd = a + ib, the D = exp(a) exp(ib).
This is convenient, since if D lies on the unit circle (i.e., if
dd is imaginary) then the torus is rectilinear, while if D has
equal real and imaginary parts (i.e., if b = π/4) then the
torus is rhombic. (The square torus being both rectilinear
and rhombic, corresponds to dd = i · π/4).

To completely specify an elliptic function in 3D-XplorMath,
choose one of JD, JE, JF, or WP from the Conformal
Map menu, and specify dd in the Set Parameter... dialog.
(Choosing Elliptic Function from the Conformal map menu
will give the default choices of JD and a square torus.)

When elliptic functions where first constructed by Jacobi
and by Weierstrass these authors assumed that the lattice
of the torus was given. On the other hand, in Algebraic
Geometry, tori appeared as elliptic curves. In this repre-
sentation the branch values of functions on the torus are
given with the equation, while an integration of a holo-
morphic form (unique up to a multiplicative constant) is
required to find the lattice. Therefore the relation between
the period quotient τ (or rather its SL(2, Z)-orbit) and the
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cross ratio lambda of the four branch values has been well-
studied. More recently, in Minimal Surface Theory, it was
also more convenient to assume that the branch values of
a degree two elliptic functions were given and that the pe-
riods had to be computed. Moreover, symmetries became
more important than in the earlier studies.

Note that the four branch points of a degree two ellip-
tic function (also called ”two-division points”, or Zwei-
teilungspunkte) form a half-period lattice. There are three
involutions of the torus which permute these branch points;
each of these involutions has again four fixed-points and
these are all midpoints between the four branch points.
Since each of the involutions permutes the branch points, it
transforms the elliptic function by a Moebius transforma-
tion. In Minimal Surface Theory, period conditions could
be solved without computations if those Moebius trans-
formations were not arbitrary, but rather were isometric
rotations of the Riemann sphere—see in the Surface Cat-
egory the minimal surfaces by Riemann and those named
Jd and Je. This suggested the following construction: As
degree two MAPS from a torus (T = C/L) to a sphere, we
have the natural quotient maps T/−id; these maps have
four branch points, since the 180 degree rotations have
four fixed points. To get well defined FUNCTIONS we
have to choose three points and send them to {0, 1,1}.
We choose these points from the midpoints between the
branch points, and the different choices lead to different
functions. The symmetries also determine the points that
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are sent to {−1,+i,−i}. In this way we get the most sym-
metric elliptic functions, and they are denoted JD, JE, JF.
The program allows one to compare them with Jacobi’s
elliptic functions. The function WP = JE ∗JF has a dou-
ble zero, a double pole and the values {+i,−i} on certain
midpoints (diagonal ones in the case of rectangular tori).
Up to an additive and a multiplicative constant it agrees
with the Weierstrass ℘-function, but in our normalization
it is the Gauss map of Riemann’s minimal surface on each
rectangular torus.

We compute the J-functions as follows. If one branch
value is called +B, then the others are {−B,+1/B,−1/B}.
Therefore the function satisfies the differential equations

(J 0)2 = (J 0(0))2(J4 + 1− (B2 + 1/B2)J2) = F (J),

J 00 = (J 0(0))2(2J3 − (B2 + 1/B2)J = F 0(J)/2).

Numerically we solve this with a fourth order scheme that
has the analytic continuation of the square root J 0 =

√
J 02

built into it:
Let J(0), J 0(0) be given. Compute J 00(0) := F 0(J(0))/2
and, for small z,

Jm := J(0) + J 0(0) · z/2 + J 00(0) · z2/8, J 00
m := F 0(Jm)/2,

J(z) := J(0) + J 0(0) · z + (J 00(0) + 2 · J 00
m) · z2/6.

Finally let J 0(z) be that square root of F (J(z)) that is
closer to J 0(0) + J 00

m · z (analytic continuation!). Repeat.
H.K.
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