
Space Curves of Constant Curvature on Tori*

These are the simplest non-planar closed constant curva-
ture space curves that we have so far met. Their existence
proof depends only on symmetry arguments. Example:

The program 3D-XplorMath allows to switch (in the Ac-
tion Menu) between such curves on three surface fami-
lies with rotation symmetry and equator mirror symme-
try: namely on tori, ellipsoids and cylinders. The merid-
ian curves of the tori and ellipsoids and the cross sections
of the horizontal cylinders are ellipses with vertical axis
cc and horizontal axis bb. The midpoints of these ellipses,
in the torus case, lie on a circle of radius aa (> bb). The

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/
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cylinders, viewed as limits of the tori, have their lengths
controlled by aa and the rotation symmetry degenerated
to translation symmetry. The ellipsoids are described as
tori with aa = 0.

Space curves of constant curvature k = dd, which lie on
a given surface, can easily be computed via the ODE be-
low, if the desired space curvature is chosen larger than all
the normal curvatures of the surface. (In fact, only those
normal curvatures which the curve meets, do matter.) We
are interested in curves which are symmetric with respect
to the equator plane and with respect to some meridian
plane - such curves are made up of four congruent arcs
and are automatically closed. The initial point is therefore
chosen on the equator and the initial direction is vertical.
The ODE is such that the angle, with which the meridians
are intersected, increases until 90◦ is reached and we have
obtained the quarter piece which gives our closed curve.
One can have the initial point on the inner or the outer
equator of the torus by switching the sign of the parame-
ter bb.
The angle between the initial direction and the vertical
meridian can be set. It is π ∗ ee. All these curves have
selfintersections, but they give some feeling, how constant
curvature space curves wind around on the given surface.
With more care we can allow constant space curvature
which is smaller than the maximum of the normal cur-
vatures of the surface. Below we will find closed ones also
among these. – First we turn to the ODE.
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The ODE for Constant Space Curvature

For every tangential unit vector ~v surfaces have a normal
curvature b(~v,~v), where b( , ) is the second fundamental
form of the surface. Here we describe surfaces as the levels
of a function f : R3 7→ R, where the ‘level’ is the set of
points where the function f has the value 0. (This constant
can be changed with the parameter ff .) This description
as a level of f allows to compute the normal curvature as

∑n(~v) = hd~v grad f, ~vi/|grad f |.
A curve on the surface with tangent vector ~v will have
space curvature dd at that point if the tangential curvature
(also called geodesic curvature) is

∑g(~v) =
p

dd2 − ∑n(~v)2.
Note that N := grad f/|grad f | is the prefered unit nor-
mal field of the torus. The desired curve on the surface is
therefore determined by the ODE:

c00(s) = ∑n(c0(s)) · N(c(s)) + ∑g(c0(s)) · c0(s)×N(c(s)).

Any solution of this ODE with
f(c(0)) = 0 and c0(0) ⊥ grad f(c(0))

stays on the level {f = 0}, i.e. on the given surface, and
is a space curve of constant curvature k = dd.

To force such curves, with simple arguments, to close up
we need to employ symmetries of the surface. Therefore
we use this ODE on surfaces of revolution which, in addi-
tion, have a reflection symmetry orthogonal to the axis of
rotation. The previous argument works on such surfaces.
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More Closed Constant Curvature Curves.

The idea is to look for other symmetries of the curves.
Our surfaces allow 180◦ rotations around normals at any
equator point. Such symmetries rotate an arc of positive
geodesic curvature ∑g into an arc with ∑g < 0, i.e. we
need ∑g = 0 where the curve crosses the equator. The
only choice for the space curvature therefore is:

k = dd := ±∑n(c0(0)), hence ∑g := ±
p

dd2 − ∑2
n.

We choose ∑g > 0 above the equator, ∑g < 0 below it.
Note that on the cylinder there are helices with these ini-
tial conditions. They solve our ODE. On the other hand,
on the torus and on the ellipsoid of revolution the latitudes
have smaller radius than the equator. Angular momentum
conservation therefore requires that the solution curves in-
crease their angle against the meridians. Exactly as in the
simpler case above they turn until they intersect a meridian
orthogonally and then continue reflection symmetric (with
respect to the plane of the meridian). This symmetry im-
plies that they reach the equator again when their geodesic
curvature is zero. Therefore they can cross the equator as
smooth curves and the continuation agrees with the 180◦

normal rotation symmetry! And so on at all further cross-
ings until the solution comes around the surface and to the
vicinity of the initial point. In general it will not close. We
can vary the size of the equator (aa for the torus, bb for the
ellipsoid) until the solution hits the initial point. There, it
is either half a period off or, because of the angular mo-
mentum, it reaches the initial point with the same tangent,
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as a smoothly closed curve! This constructs many closed
constant curvature space curves, because we have the pa-
rameters aa, bb, cc, ee to play with. – Numerically we can
use the morphing feature of 3D-XplorMath and appeal to
the intermediate value theorem to find solutions.

Surprisingly, we can find these oscillating curves also on
circular cylinders. We start the integration where we ex-
pect the reflection symmetry: tangential to a straight line
and with geodesic curvature ∑g(c(0)) ∈ (0,max∑n). For
the solution the angle against the straight lines will in-
crease and the geodesic curvature decrease until it becomes
zero. If we call the straight line through that point equator
of the cylinder, then we have on the cylinder the same kind
of curve that we obtained before on tori and ellipsoids.
In the Action Menu of 3D-XplorMath one can switch be-
tween the described two kinds of symmetries of the curves.
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Some Numerical Remarks
The helices on the cylinders show that we should expect
trouble when we try to solve our ODE numerically with
initial value ∑g(c(0)) = 0. Recall that the Runge-Kutta
method needs to make four first order trial steps before
the high accuracy Runge-Kutta step is obtained as an av-
erage of those four trial steps. These trial steps cannot
always be computed because dd2−∑2

n < 0 at the endpoint
of some trial step. Currently I do not know c000(0) for
the theoretically constructed curves (the even derivatives
vanish because of the 180◦ symmetry). Therefore I can-
not construct a numerical method which avoids the above
problem.
Instead I solve a slightly wrong equation by defining a
slightly too large space curvature:

k = dd :=
ØØ∑n(c(0), c0(0))

ØØ + 0.00001.
This error is big enough for Runge-Kutta to proceed and
small enough so that the osculating circles, while drawing
the evolute, show no discontinuity. (The evolute increases
errors of the curve very much.)

Warning: If the selection in the Action Menu is such that
the curves with two orthogonal reflection symmetries are
computed then the user may set the space curvature k = dd
arbitrarily. To avoid crashes caused by square roots of neg-
ative numbers the program computes

p
max(0, dd2 − ∑2

n).
The computed curves in such situations are geodesics, not
curves with constant space curvature.

H.K.
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