
Autoevolutes*
Or: Closed constant curvature space curves

which are their own evolutes

2 - 3 - Autoevolute
with some osculating
circles

See also: Space curves
of constant curvature

The suggestion to look for these spectacular curves is from
Ekkehard Tjaden, the details are joint work.
Assume that the curve c is parametrized by arclength s,
has constant curvature ∑ and its Frenet frame is
{T (s), N(s), B(s)}. Its evolute is

c̃(s) = c(s) + 1
∑ · N(s), c̃ 0(s) = τ(s)

∑ · B(s).

The velocity of the evolute is therefore |c̃ 0(s)| = |τ(s)|
∑

and its Frenet frame is
T̃ (s) = sign(τ)B(s), Ñ(s) = −N(s), B̃(s) = sign(τ)T (s).
That the evolute has the same constant curvature ∑ follows
from: Ñ 0(s) = −N 0(s) = ∑·T (s)−|τ(s)|·T̃ (s). For the tor-
sion τ̃(s) of the evolute differentiate B̃(s) with respect to
arclength of the evolute: sign(τ)B̃0(s) = T 0(s) = −∑Ñ(s),
hence τ̃(s) = sign(τ)∑/|c̃ 0(s)| = ∑2/τ(s).

* This file is from the 3D-XplorMath project. Please see:

http://3D-XplorMath.org/

1



The two curves c, c̃ are geodesics on the canal surface which
envelops the spheres of radius 1/2∑ with midpoints on the
curve m(s) = (c(s) + c̃(s))/2, because their principle nor-
mals N, Ñ are orthogonal to the canal surface. This canal
surface is, in the case of the example above, a wobbly torus
- maybe that helps the visualization.
Constant curvature curves in general do not have congru-
ent evolutes and even if c, c̃ are congruent, this is difficult
to check in case c is parametrized by arc length. One may
look for curves with non-constant velocity v(t) = |ċ(t)|,
choose τ(t) in terms of v(t) and try to arrange things so
that the first half of the curve is congruent to the evolute
of the second half and vice versa. This is achieved by the
following version of the Frenet equations which Ekkehard
suggested. It assumes t ∈ [0, 2π] and v(t + π) = 1/v(t).

Ṫ (t) = +∑ · v(t) · N(t),

Ṅ(t) = −∑ · v(t) · T (t) + ∑/v(t) · B(t),

Ḃ(t) = −∑/v(t) · N(t).
In 3DXM we choose first h(t) = bb · (cc sin(t) + ee sin(3t))
and then v(t) =

p
1 + h(t)2−h(t) or also v(t) = exp(h(t));

as with the other constant curvature curves ∑ = aa. Com-
parison with the standard Frenet equations shows

τ(t) = ∑/v(t)2.
Note that v(t) and τ(t) are, relative to t∗ = π/2+nπ, even
functions. This implies that the principle normals at these
points are symmetry normals, saying that 180◦ rotation
around these normals map the curve onto itself. Closed
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examples can therefore be found by solving a 2-parameter
problem:
a) get the symmetry normals to lie in a plane – they then
automatically intersect in one point.
b) get neighbouring symmetry lines to intersect with a ra-
tional angle - preferably angles like π/2, π/3, 2π/3 . . ..

This looks similar to the case of single constant curvature
curves. However in that case the constant Fourier term
of the torsion is a parameter that allows to solve problem
a) for all choices of other parameters. This allows to deal
with problem b) assuming that a) is already solved.
For the autoevolutes we have not found such a simplifying
parameter. By trial and error one has to close the curve to
pixel accuracy. Only then does the automatic solution of
the 2-paramter problem work and produce a high accuracy
solution.

Note that the curve has large
torsion – i.e. twists rapidly
and moves slowly – oppo-
site to the points with small
torsion, where the curve is
fairly circular and its ve-
locity is large.

H.K.

3


