
Forced Duffing Oscillator *

What is it?

What we shall call the Forced Duffing Oscillator Equation
is the second order ODE for a single variable x,

d
2
x

dt2
= −hhx− ii x3 − aa dx

dt
+ bb cos(cc t) (1)

whose solutions we display via the equivalent (non-auto-
nomous) first order system in two variables, x and y:

dx

dt
= y, dy

dt
= −hhx− ii x3 − aa y + bb cos(cc t) (2)

which in turn can be made into an autonomous first order
system in three variables, T , x and y:

dT

dt
= 1,

dx

dt
= y,

dy

dt
= −hhx− ii x3 − aa y + bb cos(cc T ). (3)

We discuss the interpretation and significance of the five
parameters, aa, bb, cc, hh, ii below. Their default values
are: aa = 0.25, bb = 0.3, cc = 1.0, hh = −1.0, and ii = 1.0.
If bb·cc =/ 0 then the forcing period 2π/cc is shown by yellow
dots on the orbit.

Why is it interesting?

Here are two of the considerations that make the oscil-
lator equation (1) worth studying. First, with appropri-
ate choices of parameter values it reduces to a variety of
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mathematically and physically interesting oscillator mod-
els; some classical such as the harmonic oscillator (with
and without damping and forcing) and others that are
more exotic, such as the classic Duffing oscillator intro-
duced by Duffing in 1918. By putting these together in a
parametric family, we can investigate how various features
of these systems behave as we move around in the param-
eter space. Secondly—and more importantly—it was in in
the study of the Duffing Oscillator that symptoms of the
phenomena we now call “chaos” and “strange attractor”
were first glimpsed (although their significance was only
appreciated later). By the Poincaré-Bendixson Theorem,
three is the smallest dimension in which an autonomous
system can exhibit chaotic behavior, and the Duffing sys-
tem is so simple that it lends itself very easily to the study
and visualization of the phenomena related to chaos.

The Newtonian Particle Interpretation.

Note that (1) becomes Newton’s equation of motion for a
particle of unit mass moving on the x-axis if we define the
“force”, F (x, dx

dt
, t), acting on the particle to be the right-

hand side of (1). Let’s interpret the various terms of F
from this point of view.

If hh is positive then the term −hhx by itself gives Hooke’s
Law for a spring, that “stress is proportional to strain”
and the parameter hh has the interpretation of Hooke’s
proportionality factor between the extension of the spring,
x, and the restoring force. If also ii = 0 then we have a



pure Hooke’s Law force that gives the Harmonic Oscillator,
d
2
x

dt2
= −hhx. But a real spring only satisfies Hooke’s Law

approximately, and the term −ii x3 represents the next
term in the Taylor expansion of the restoring force under
the reasonable assumption that this force is an odd func-
tion of the spring extension, x. (If ii is positive it is called
a “hardening” spring and if negative a “softening” spring.)
For the classic Duffing Oscillator, hh is negative and ii is
positive and there is not a good interpretation of the force
in terms of a spring. Rather, the sum of the two terms
−hhx− ii x3 should be interpreted as the force on a par-
ticle that is moving in a double-well potential as we will
discuss in more detail below.

The term −aa dx

dt
represents a “friction” force of the sort

that would be experienced by a particle like a bullet trav-
eling through air or a bead sliding on a wire; that is, as-
suming that the “damping” or “friction” coefficient aa is
positive, it describes a force acting on the particle in the
direction opposite to the velocity and with a magnitude
that is proportional to the magnitude of the velocity.

Under the sum of the above terms of the force law F , the
particle will (in general) oscillate back and forth—which of
course is why it is called an oscillator—however if aa > 0
these oscillations will gradually die down as the kinetic en-
ergy is absorbed by friction. The final term in the force
law, bb cos(cc t) is a periodic forcing term that will act on
and perturb the motion of this oscillating particle, and we



note that it is solely a function of the time and is inde-
pendent of both the position and velocity of the particle.
We will discuss a possible physical interpretation of this
term later. The parameter bb is clearly the amplitude of
this forcing term, i.e., its maximum magnitude, and the
parameter cc is the angular velocity of its phase in radians
per unit time, so that the period of the forcing term is 2π

cc

and its frequency is cc

2π . As we shall see, it is the energy
that is fed into the system by this forcing term that is es-
sential for the interesting chaos related effects to occur. In
fact the most interesting behaviors of solutions of (1) are
present when all the above terms are present in F , that
is when the oscillator is both forced and damped, and in
fact the way damping and forcing can balance each other is
crucial to understanding the general behavior of solutions.
However we will begin by analyzing the simpler situation
when both the damping and forcing terms are missing.

The Undamped, Unforced Case.

We now assume that aa and bb are both zero, so the
force F (x) = −hhx − ii x3 is a function of x alone. Now
in one-dimension, whenever this is the case the force is
conservative, that is, it is minus the derivative of a “po-
tential” function, U(x). Indeed, if we define U(x) :=
−
�
x

0 F (ξ) dξ, then clearly F (x) = −U �(x). If as above we

write y := dx

dt
, define the kinetic energy by K(y) := 1

2y
2

and define the Hamiltonian or total energy function by
H(x, y) := K(y) + U(x), then dH

dt
= y dy

dt
+ U �(x)dx

dt
=



y(dy
dt

+ U �(x)). So, if Newton’s Equation is satisfied, dy

dt
=

d
2
x

dt2
= F (x) = −U �(x), so dH

dt
= 0. This of course is the

law of conservation of energy: the total energy function
H(x, y) is constant along any solution of Newton’s Equa-
tions. In one-dimension this provides at least in princi-
ple a way to solve Newton’s Equation for any initial con-
ditions x = x0 and y = y0 at time t = t0. Namely,
the path or orbit of the solution is a curve in the x-y
plane, and by conservation of energy this curve is given
by the implicit equation H(x, y) = H(x0, y0). And since�
dx

dt

�2
= y2 = 2K(y) = 2(H(x0, y0)− U(x)), we find:

dt

dx
=

1�
2(H(x0, y0)− U(x))

,

so we can find t as a function of x by a quadrature, and
then invert this relation to find x as a function of t.

In the Harmonic Oscillator case, with hh = 1 and
ii = 0, U(x) = 1

2x
2 so H(x, y) = 1

2 (x
2 + y2), so the orbits

are circles, and it is easy to carry out the above quadrature
and inversion explicitly, to obtain x(t) = x0 cos(t − t0) +
y0 sin(t− t0).

The Universal “Sliding Bead on a Wire” Model.

In one-dimension there is a highly intuitive physical model
that makes it easy to visualize the motion of a particle
under a given force. Moreover this model is “universal” in
the sense that it works for all forces that are function of
position only and hence, as we noted above, are of the form



F (x) = −U �(x) for some potential function U . Namely,
imagine that we string a bead on a frictionless piece of
wire that lies along the graph of the equation y = U(x).
If the bead has mass m = 1 and if we choose units so
that g, the acceleration of gravity, equals one, then the
gravitational potential of the bead is mgh = h where h is
its height. So if as usual we interpret the ordinate of a
point as its height, then the gravitational potential of the
bead when it is at the point (x, y) = (x, U(x)) is just U(x),
and the sliding motion of the bead along the wire under
the attraction of gravity will exactly model whatever other
system we started from!

In the case of the Harmonic Oscillator, where F (x) = −x
and U(x) = 1

2x
2, the graph is the parabola, y = 1

2x
2 and

it is easy to imagine the bead oscillating back and forth
along this parabola.

For the unforced and undamped Duffing Oscillator the
force is F (x) = −hhx− ii x3, where for simplicity in what
follows we will assume that ii > 0 and hh < 0. The poten-
tial is U(x) = hh

2 x2+ ii

4 x
4, which we note can be considered

as the first two terms in the Taylor expansion for an arbi-
trary symmetric potential with local maximum at 0. It is
easily checked that limx→±∞ U(x) = +∞ and in addition
to the local maximum at 0, there are two other critical

points of U , at x = ±
�

−hh

ii
, where U has local minima.

For the default values, hh = −1 and ii = 1, the force is
F (x) = x(1−x2), and the potential is U(x) = 1

4x
2(x2−2),



so the local minima are at ±1. We graph this force F (x)
and potential U(x) below, and show a selection of the re-
sulting orbits. It should be clear why U is called a double-
well potential.

F (x) U(x)

Some orbits of the Unforced, Undamped Duffing Oscillator



The Unforced, Damped Duffing Oscillator.

We now still assume bb = 0 (so there is no forcing) but we
assume that aa > 0, so there is damping. In the bead on
a wire picture, aa dx

dt
= aa y is the friction from the bead

rubbing against the wire, and the force is now given by
F (x) = −U �(x)− aa y. If we again calculate dH

dt
as we did

above, we now find not dH

dt
= 0 but instead dH

dt
= −aa y2.

The result is that instead of the orbits of the bead in the
x-y-plane being closed curves of constant total energy H,
the energy decrease along the obits, and they cut across
the H = constant curves and spiral in towards the two
minima of H at the bottom of the two potential wells. We
show a selection of the resulting orbits below.

Some orbits of the Unforced, Damped Duffing Oscillator



The Forced Duffing Oscillator.

We now add back the forcing term bb cos(cc t). First a
word about how to interpret this force in the sliding bead
picture. If we assume that there is an alternating electric
field parallel to the x direction and with strength cos(cc t)
at time t, then bb cos(cc t) will be the electric force felt by
the bead if we give the bead an electric charge of magnitude
bb.

Some orbits of the Forced, Damped Duffing Oscillator



Chaos, Strange Attractors, and Poincaré Sections.

Two Time Slices of the Duffing Attractor
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